تحقیق دانشجویی - 395

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

تحقیق درباره سلولز

بازديد: 1263

 

سلولز

سلولز دارای فرمول عمومی است. سلولز ساختار اولیه دیواره سلولی گیاهان را تشکیل می‌دهد. دستگاه گوارشی انسان قادر به هضم سلولز نیست و آن را بدون تغییر دفع می‌کند اما برخی جانوران مثل نشخوارکننده‌ها و موریانه‌ها می‌توانند سلولز را به کمک میکروارگانیسمهایی که در دستگاه گوارش آنها زندگی می‌کنند، هضم کنند. این میکروارگانیسمها با آزادکردن آنزیمهایی به هضم سلولز کمک می‌کنند.

ساختمان سلولز

ساختمان شیمیایی سلولز

در مولکول سلولز مولکولهای β - گلوکز نسبت به یکدیگر چرخش 180 درجه‌ای دارند. ضمن برقراری اتصال بین دو مولکول β - گلوکز از OH متصل به کربن 4 یک مولکول و OH کربن شماره 1 مولکول بعدی یک مولکول آب جدا می‌شود و پل اکسیژنی برقرار می‌شود. از سوی دیگر در مولکول سلولز امکان برقراری پیوندهای هیدروژنی نیز وجود دارد. پیوستن دو مولکول β - گلوکز موجب تشکیل یک مولکول سلوبیوز می‌شود.

هر 5 مولکول سلوبیوز با آرایش فضایی مکعبی شکل ، بلور سلولز را بوجود می‌آورند و از مجموعه بلورهای سلولز ، رشته ابتدایی یا میسل سلولز تشکیل می‌شود. مجموعه میسلها ، میکروفیبریل سلولزی را بوجود می‌آورند که قطری حدود 25 نانومتر دارد.از مجموع حدود 20 میکروفیبریل ، ماکروفیبریل سلولزی تشکیل می‌شود.

 ابعاد سلولز

سلولز از واحدهای دارای قطر 35 آنگستروم تشکیل شده که آنها را رشته‌های ابتدایی می‌نامند. این قطر اغلب درست است اما حتمی نیست. مثلا در برخی نمونه‌ها مثل سلولز جلبک والونیا 300 آنگستروم و در ترکیبات موسیلاژی برخی میوه‌ها تنها 1 آنگستروم است. به این ترتیب تصور حالت همگن برای رشته‌های ابتدایی سلولز کنار گذاشته شد و اشکال مختلف (استوانه‌ای - منشوری با قاعده مربعی - روبان کم و بیش پهن) منظور گردید.

دو عامل در محدودیت ابعاد این واحدها دخالت دارد: یکی همی سلولزها که همانند پوششی رشد جانبی رشته‌های سلولزی را محدود می‌کنند و دیگری آرایش یا سازمان یافتگی حاصل از مجموعه سلولز سنتتازی (آنزیم تولید کننده سلولز) غشای سلولی که رشته‌های اولیه سلولزی را می‌سازد. سلولز در برابر تیمارهای آنزیمی و شیمیایی بسیار مقاوم است.

تولید سلولز

مجموعه پژوهشهایی که در مورد بیوسنتز سلولز انجام شده است نشان می‌دهد که پیش ساز سلولز یوریدین دی فسفو گلوکز است که بوسیله حفره‌های گلژی به مجموعه‌های آنزیمی سلولز سنتتازی موجود در غشای سلولی می‌رسد. با دخالت این مجموعه‌های آنزیمی از پلیمریزاسیون مولکولهای پیش ساز مولکولهای سلولز تشکیل می‌شود. پس از تشکیل مولکولهای سلولز تجمع آنها به صورت بلورهای سلولز و رسیدن به حد میکروفیبرلها و ماکروفیبریلهای سلولزی بر بنای پدیده خود آرایی با برقراری پیوندهای هیدروژنی بین مولکولی است. این تجمع نیاز به آنزیم ندارد.

 تجزیه سلولز

تجزیه سلولز بوسیله سلولازها انجام می‌شود. سلولازها را به دو گروه اگزو سلولازها و آندو سلولازها تقسیم بندی می‌کنند. اگزوسلولازها قدرت عمل بیشتری دارند و بر انواع مختلف سلولز چه سلولز بلوری و چه سلولز غیر بلوری که در نتیجه زخم یا تخریب بخشهای سلولزی بلوری ایجاد می‌شود اثر می‌کنند و در مرحله اول عمل خود موجب گسستن پیوندهای بین مولکولی می‌شوند. آندو سلولازها بر محصول عمل اگزو سلولازها اثر می‌کنند و موجب گسستن پیوندهای درون مولکولی می‌گردند بنابراین سلولازها اشتراک یا تعاون عمل دارند.

 فرمهای سلولز و شناسایی آنها

α - سلولز: این فرم از سلولز در محلول 17.5 درصد از هیدروکسید سدیم در 20 درجه سانتیگراد حل نمی‌شود.

β - سلولز: β - سلولز در این محلول حل شده اما به محض اسیدی کردن محلول ته‌نشین می‌شود.

γ - سلولز: در محلول 17.5 درصد هیدروکسیدسدیم حل می‌شود اما با اسیدی شدن محلول ته‌نشین نمی‌شود.

کاربرد سلولز

سلولز ماده تشکیل دهنده دیواره سلولی گیاهان است. این ترکیب اولین بار در سال 1838 مورد توجه قرار گرفت. در آن سالها با اعمال تغییراتی در آن مانند نیتروژندار کردن در تولید نیترو سلولز مورد بهره برداری قرار گرفت. سلولز بصورت تقریبا خالص در رشته‌های پنبه وجود دارد. این رشته‌ها در تولید نخ و پارچه بافی و تولید پوشاک اهمیت فراوانی دارند.

همچنین الیاف پنبه استرلیزه شده در پزشکی کاربرد زیادی دارد. سلولز بصورت ترکیب با لیگنین (ماده چوب) و سلولز در تمام مواد گیاهی وجود دارد. سلولز در گذشته در ساخت باروت بدون دود مورد استفاده قرار می‌گرفت. امروزه از آن برای تولید نیترو سلولز که در ساخت مواد منفجره ، پلاستیک‌سازی ، رنگسازی و … کاربرد دارد، استفاده می‌کنند. سلولز همچنین در آزمایشگاه به عنوان جزء عمل کننده فاز جامد در کروماتوگرافی لایه نازک استفاده می‌شود.

همی سلولزها

همی سلولزها گروهی از پلی ساکاریدهای غیر ساختاری با وزن مولکولی کم و اغلب ناهمگن هستند که ارتباطی با سلولز نداشته و از راه بیوسنتز متفاوتی تولید می‌شوند. نام همی سلولزها نشان دهنده ارتباط یا نزدیکی آنها با سلولز نیست. نقش همی سلولزها در دیوراه سلول بخوبی شناخته شده نیست، اما وزن مولکولی خیلی کم آنها نمی‌تواند همی سلولزها را به عنوان یک پلیمر ساختاری مطرح کند (درجه پلیمریزاسیون آنها بین 150 - 200 است).

تحقیقات نظری در این زمینه نشان می‌دهد که همی سلولزها ممکن است نقشی در انتقال آب داشته باشند. همی سلولزها معمولا از واحدهای مونومری هگزوزی مثل D- گلوکوپیرانوز ، D- مانوپیرانوز و D- گالاکتوپیرانوز و واحدهای پنتوزی مثل D- زایلو پیرانوز و –L آرابینوفورانوز تشکیل شده‌اند. بخش قابل توجهی از همی سلولزها حتی بعد از لیگنین زدایی شیمیایی ، در خمیر کاغذ باقی می‌مانند. مهمترین همی سلولز موجود در سوزنی برگان گالاکتو گلوکومانان است که حدود 20% از وزن خشک چوب را تشکیل می‌دهد.

فوايد سلولز

سلولز براي بدن فوايد بسياري دارد: تسكين يبوست و بواسير، پيشگيري از ابتلا به بعضي بيماريهاي خاص، تحت كنترل درآوردن وزن.

رهايي از يبوست و بواسير

سلولز مي تواند مقادير زيادي آب جذب كند و اين باعث مي شود كه مدفوع نرمتر شده و راحت تر دفع شود.

در بسياري از موارد، افزايش سلولز در رژيم غذايي، براي چندين روز مانع يبوست مي شود، چون مدفوع راحت تر دفع مي شود، فشار كمتري لازم است و بواسير تسكين مي يابد.

پيشگيري از بيماريهاي مختلف

بيماريهاي قلبي: عقيده بر اين است كه غذاهاي حاوي سلولز قابل حل (مثل جو دوسر و لوبيا) مي تواند بر كلسترول، تري گليسيريد و ديگر ذرات خون كه در رشد بيماريهاي قلبي مؤثر هستند، تأثيرات مثبت داشته باشند. ميوه و سبزيجات مانند (مركبات و هويج) نيز همين تأثير را دارند.

سرطان: وقتي سلولز مصرف مي كنيم، عبور غذا از درون بدن سريعتر صورت مي گيرد. بعضي متخصصين عقيده دارند با رژيم غذايي غني از سلولز مي توان از سرطانهايي مثل سرطان سينه، سرطان تخمدان و سرطان رحم، كه به سوء تغذيه شديد مربوط مي شود، پيشگيري كرد.

ديابت: افزودن سلولز به رژيم غذايي، سطح قند خون را تنظيم مي كند و همين موضوع، مانع بروز بيماري ديابت مي شود. علاوه بر اين، افرادي كه دچار بيماري ديابت هستند، با مصرف سلولز، كاهش چشمگيري در قند خونشان ايجاد مي شود.

بيماري آماس: آماس بيماري است كه در آن كيسه هاي كوچكي كه آماس ناميده مي شود، در ديواره قولون (بخشي از روده بزرگ) رشد مي كند. در درصد كمي از افراد اين كيسه ها متورم يا عفوني مي شوند. اين بيماري با درد، اسهال، يبوست و مشكلات ديگر همراه است.

سنگ كيسه صفرا و سنگ كليه: گوارش سريع به آزادسازي گلوكز در جريان خون منجر مي شود. براي برطرف كردن اين موضوع، بدن بايد مقدار زيادي انسولين در خون بريزد و اين باعث مي شود كه سنگ كيسه صفرا و سنگ كليه به وجود آيد.

كنترل وزن

غذاهايي كه حاوي مقادير زيادي سلولز هستند، نسبت به غذاهايي كه سلولز كمتري دارند، حجيم ترند و اگر به شكل صحيح به اندازه كافي مصرف شوند، بعضي اوقات مي توانند شروع گرسنگي را به عقب بيندازند.

* هميشه سعي كنيد سلولز را به شكل طبيعي مصرف كنيد، مثلاً به جاي اينكه روي غذايتان سبوس بريزيد، غذاهايي بخوريد كه سلولز زيادي دارند.

* از خوردن غذاهايي كه با نداشتن سلولز، راحت خورده و هضم مي شوند، بخصوص قندها، اجتناب كنيد.

* غذاهايي را انتخاب كنيد كه بدون كالري زياد، گرسنگي را برطرف مي كنند. مثل سبزيجات و ميوه جات كه غني از سلولز هستند.

کربوکسی متیل سلولز

کربوکسی متیل سلولز (Carboxymethyl cellulose) یا (‍CMC) از مشتقات سلولز است .این ماده از استخلاف شدن گروه های کربوکسی متیل (-CH2-COOH) بجای برخی از گروه های هیدروکسیل (-OH) بدست می آید.[نیاز به ذکر منبع]

خواص فیزیکی: 1-حلالیت 2-ویسکوزیته در محلول 3-فعالیت سطحی 4-خواص ترموپلاستیکی 5-پایداری (در برابر تخریبات زیست‌شناختی، گرما، آب‌کافت و اکسایش)

سلولز استات

سلولز استات‌ :( Cellulose acetate ) «سلولز استات» ماده‌ای است که بهطور گسترده در ساخت فریم بهکار می‌رود. مادهی اصلی سلولز، از پنبه یا خمیر چوب گرفته شده و سپس مورد عمل‌آوری واقع می‌گردد. هنگامی که مادهی اولیهی سلولز از پنبه‌استخراج می‌شود، بهصورت رشته‌هایی می‌باشند که به تخم پنبه چسبیده اند و آن‌قدر کوتاه می‌باشند که قابل‌استفاده برای منسوجات نیستند.این رشته‌هـا را Linter گویند. مواد استخراجی از چوب و یا پنبه را با مخلوطی از انیدرید،اسید استیک و اسید سولفوریک(که به عنوان کاتالیزور عمل می‌کنند) به هم‌می‌آمیزند. سپس، مواد پلاستیک‌ساز و موادی را جهت استحکام، به آن اضافه می نمایند.

امروزه، بعضی از آلرژیها را به استفاده از فریمهای ساخته شده از سلولز استات نسبت می دهند. گرچه، این موضوع نادر است‌. زیرا بیشتر اوقات، مشکلات پوستی ناشی از این گونه واکنشهای آلرژیک مربوط به ذراتی می شود که توسط مواد سازندهی فریم قابل جذب اند. یعنی مادهی سازندهی فریم، خود به تنهایی

نمی تواند باعث بروز یک واکنش آلرژیک شود. لذا، به منظور محافظت سطح فریم از تماس با این گونه مواد، سطح فریم را روکش می کنند.در صورتی که سطح فریم روکش نشود، این امکان وجود دارد که سلولز استات، موادی را که آلرژی‌زا هستندجذب نماید. یک روکش خوب، روکشی است که مانع رسیدن اشعهی فرابنفش به فریم شود. چنین روکشی از کم رنگ شدن فریم نیز جلوگیری‌ می‌نماید.

«سلولز استات‌» را می‌توان به شکل ورقه‌های پلاستیکی ساخت و از آن قطعات فریم را برید و یا اینکه‌ بهصورت دانه‌های استات درآورده و آن را در مدل تزریقی بهکار برد.برای ساخت فریم، سلولز استات را معمولاً بهصورت ورقه‌ بهکار می‌برند.

سلولز استات پروپیونات‌ ( Propionate ) یا : ( cellulose aceto - propionate )

که عموماً به پروپیونات معروف است‌. بسیاری از خصوصیات سلولز استات را دارا بوده وبرای مدل‌تزریقی مناسب‌تر است‌.(همچنین به جهت دارا بودن وزن کمتر نسبت به استات،از مزیت سبکی نیز برخوردار می باشد.) پایداری رنگ در پروپیونات نسبت به سلولز استات کمتر می‌باشد و در صورتی‌که روکش جذب کنندهی اشعهی ماوراء بنفش نداشته باشد، مدت ‌نسبتاً کوتاهی رنگ خود را از دست می‌دهد. برای ساخت فریم، دانه‌های پروپیونات را حرارت داده تا بهصورت مایع درآیند. سپس، آن را به وسیلهی تزریق‌ برای ساخت مدلهای دلخواه بهکار می‌برند.دانه‌های پروپیونات، ممکن است که در ابتدا بی‌رنگ باشند که در این صورت بعد از ساخت فریم قسمتهای مختلف آن را به دلخواه رنگ می‌کنند.


نشاسته کربوهیدراتی است که در سیبک گیاه و دانه  ذخیره شده که می توان  ذرت ، گندم ، سیب زمینی ، تاپیوکا( ماده دانه دانه و پر نشاسته ) و برنج را نام برد . از لحاظ واحد ساختاری ، دارای دو نوع مولکول است که عبارتند از آمیلوز که حدود 30-20 درصد آن را تشکیل میدهد و آمیلوپکتین که حدود 80-70 درصد است .

از لحاظ ساختار مولکولی آمیلوز و آمیلوپکتین جزء مولکولهای نا همساز به حساب می آیند . آمیلوز دارای وزن مولکولی پایین بوده ، در حالیکه آمیلوپکتین دارای مولکولهای بسیار بزرگ و فشرده می باشد . نشاسته ارزان بوده و به عنوان عامل تهیه ژله ، تثبیت کننده امولسیون و غلیظ کننده مورد استفاده قرار میگیرد . آمیلوز به عنوان هیدروکلویید یا آب چسبه تشکیل دهنده ژله مورد استفاده قرار میگیرد .

 

 

 

 


نشاسته فوق تصفیه خوراکی

خواص فرم پذيری نشاسته :

چنانچه به 100 گرم نشاسته ، 50 میلی لیتر آب اضافه گردد، آن را مخلوط نمائيم ، تغيير فاحشی در آن بوجود نمی آيد . خمیر نشاسته که با آب اشباع شده است ، سفت شده و به سختی جابجا می شود و به مقدار کمی فرم پذير ميباشد به عبارت ديگر نشاسته در این حالت الاستیک نخواهد بود که علت این امر را می توان به شرح زیر توجیه نمود :

دانه های نشاسته ای که با آب مرطوب می شوند به یکدیگر می چسبند که در هنگام وارد کردن نیرو و فشار ( در هنگام زدن یا لوله کردن خمیر ) بسختی جابجا می گردند. البته قابلیت به هم چسبندگی دانه های نشاسته چندان زیاد نمی باشد . حال چنانچه علاوه بر 50 میلی لیتر آب 10 میلی لیتر دیگر آب به نشاسته اضافه گردد ، یعنی مجموعاً 60 میلی لیتر ، مشاهده می شود که نشاسته قادر است 2 وزن خود آب جذب نماید که در چنین حالتی نشاسته قابلیت کشش پذیری ، لغزندگی و جابجایی پیدا کرده و دانه های نشاسته می توانند جابجا شوند، حال اگر به این نشاسته 10 میلی لیتر یعنی جمعاً 70 میلی لیتر آب اضافه کرده و آن را توسط مخلوط کن به هم بزنیم مشاهده می گردد که خمیر نشاسته ، وضعیت و ثبات خود را با آبگیری بیشتر از دست داده ، به صورت سوسپانسیون در می آيد . علت این امر را می توان چنین توجیه نمود که در اثر افزودن آب بیشتر ، دانه های نشاسته قابلیت بهم چسبندگی خود را از دست داده و روی هم سر خورده و در اثر افزودن آب بیشتر، دانه های نشاسته شناور می گردند . از این خواص می توان در فرآیند تهیه خمیر و یفر استفاده نمود و ذرات آرد را به صورت سوسپانسیون درآورد .

آنزیمهای آمیلولیتیکی می توانند در طی مراحل آماده سازی خمیر ، نشاسته را تجزیه نموده و بدین وسیله از نظر مکانیکی نشاسته را دچار صدمه دیدگی نمایند .

تغییر آنزیماتیکی ( تجزیه ) نشاسته :

- پروتئازها

 پروتئازها باعث تجزیه غشاء پروتئینی دانه های نشاسته می گردند .

- آمیلازها ، نشاسته را به قندهای محلولی (مالتوز)  تجزیه می نماید .

به طور کلی آردهای سفید ( گندم ) از نظر آنزیمی فقیر میباشند . مزایای ناشی از این امر موجب می گردد :

- نشاسته و همچنین گلوتن به مقدار کمی تجزیه شده یا صدمه بیند ،بنابراین خواص و ویژگی های مکانیکی خمیر تغییر زیادی نمی کند در حالی که معایب آردهای سفید ، ضعیف بودن فعالیت آنزیمی و در نتیجه پایین بودن قندهای قابل تخمیر میباشد ، بالعکس آردهای تیره از نظر آنزیمی غنی بوده که مزایای ناشی از این امر موجب می شود :

- تخمیر بهتر صورت گیرد .

- مواد آروماتیک بیشتر شده و مزه نان بهتر می شود ، در حالی که معایب آردهای تیره صدمه دیدگی مکانیکی است که به علت فعال بودن آنزیم ، تجزیه نشاسته و گلوتن بیشتر صورت می گیرد .

 

موارد مصرف : 

 

3

 

 

از نشاسته به عنوان ماده اوليه در بسياری از رشته های صنايع غذايی استفاده می شود که برای هر مورد نشاسته خاص آن مناسب است . در توليد دکستروز ،دکسترين و گلوکز مايع ماده اوليه اصلی، نشاسته است و برای بسياری ديگر از رشته های صنايع ، برای نقشی که نشاسته در بهبود ويژگيهای فيزيکی ،بالا بردن ثبات سيستم های کلوئيدی و اثر غلظت دهندگی دارد ، از آن استفاده می شود . در پودرهای نانوايی و مواد بهبود دهنده پخت به عنوان Filler(پر کننده ) و جلوگيری از واکنش بين بيکربنات و اسيد پيش از ساختن خمير ، در سس ها برای حفظ امولسيون روغن و سرکه و ساير اجزا و جلوگيری از دوفاز شدن سيستم ، در بيسکويت برای بهبود بافت و تردی فرآورده و کنترل PH، در صنايع پخت پيش از قالب گيری برای جلوگيری از چسبيدن خمير به قالب ، در توليد انواع سوپ به عنوان غلظت دهنده و در صنايع کنسرو سازی ، صنايع گوشت ،صنايع غذاهای منجمد ،بيسکويت سازی ، کيک سازی ، ويفر ، کاکائو ، بستنی ، آدامس ، قهوه و خردل، مواد افزودنی غذايی، شيرينی جات،فرآورده های گوشتی، کنسرو، سس، صنايع غذايی- بهداشتی و مصارف صنعتی کاربرد دارد .

 

نشاسته خوراکی گلمهر دارای گواهینامه تضمین ایمنی و بهداشت مواد غذایی HACCP و گواهینامه تضمین کیفیت iso 9001 ; 2000  از URS انگلستان می باشد .

نشاسته ممتاز

موارد مصرف :

این نوع نشاسته ویژه مصارف صنعتی ، تولید گلوکز، چسب سازی، کارتن سازی و.... است.

 

دارای  گواهینامه تضمین کیفیت iso 9001 ; 2000  از URS انگلستان .

نشاسه درجه 2 صنعتی

موارد مصرف :

این نوع نشاسته ویژه مصارف صنعتی مانند کارتن سازی ، چسب سازی، رنگ سازی، تولید گلوکز، اکسیداسیون ، پر ژلاتین جهت گل حفاری چاههای نفت ، خوراک دام  و ... میباشد.

  دارای گواهینامه تضمین کیفیت iso 9001 ; 2000  از URS انگلستان .

 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: پنجشنبه 14 اسفند 1393 ساعت: 16:10 منتشر شده است
برچسب ها : ,,,
نظرات(0)

تحقیق درباره سلول و بافت

بازديد: 486

 

 سلول و بافت

پيكر همه جانوران از سلول ساخته شده است. اساس ساختماني همه سلولها نيز مشابه است. به اين ترتيب كه هر سلول از غشا و هسته و سيتوپلاسم تشكيل شده است. درون سيتوپلاسم اندامكهايي وجود دارد كه عبارتنداز: ميتوكندري، دانه­هاي گرد يا ميله­اي با غشا دو لايه كه لايه داخلي داراي فرورفتهگيهايي است. ميتوكندري محل تنفس سلولي و توليد انرژي مي­­باشد. واكوئلها حاوي مايعاتي به نام شيره سلولي هستند. وظيفه آنها، تنظيم مقدار آب سلول، ذخيره كردن بعضي مواد، شركت در گوارش و دفع مواد در بعضي از سلولها مي­باشد.

 شبكه آندوپلاسمي

عمل شبكه آندوپلاسمي، نقل وانتقال مواد در داخل سلول بين هسته و سيتوپلاسم است و از مجموعه مجراها و حفرات درون سيتوپلاسم تشكيل شده­اند. بر روي ديواره بخشي از آنها دانه­هاي ريوزوم قرار دارد.

 دستگاه گلژي

دستگاه گلژي كيسه­هاي پهني است كه روي هم قرار دارند و در سلولهاي ترشحي بيشتر هستند. عمل دستگاه گلژي، نگهداري و ترشح مواد مي­باشد.

هسته

هسته، اغلب كروي است و در مركز سلول قرار دارد. هسته را غشاي دو جداره احاطه كرده است. درون هسته، شيره هسته وجود دارد. درون شيره هسته، شبكه كروموزوم وجود دارد كه به هنگام تغذيه سلولي به صورت كروموزومها نمايان مي­شود.

  غشاي سلول

پرده­اي در اطراف همه سلولها قرار گرفته. غشاي پلاسمايي از ملكولهاي چربي و پروتئين ساخته شده است، در لابه­لاي مولكولهاي پروتين به صورت نامنظم قرار دارد.

مولكولهاي چربي از فسفو ليپيد و در دو لايه قرار دارد و بين آنها پيوند شيميايي وجود ندارد. در ساختمان غشاي مولكولهاي هيدرات كربن هم وجود دارد. سلولها براي زنده ماندن بايد موادي را از محيط بگيرند. در همين  حال مي­بايست مواد زائد را از خود دور كنند. براي درك بهتر اينكه ملولهاي مواد، چگونه از غشاي سلولي مي­گذرند. بايد اطلاعاتي درباره رفتار ملكولها و حركات آنها داشته باشيم.

مولكولها هميشه در حال حركت هستند، جنبش مولكولها در جامدات كم، اما در مايعات و گازها زياد است. مولكولها به طور اتفاقي به هر طرف مي­روند. يعني به طور مستقيم به حركت خود ادامه مي­دهند، مگر اينكه در مسير خود به مولكولهاي ديگر برخورد كنند. اين رفتار در محيطهاي گاز و يا مايع باعث گسترش تدريجي آنها ميشود تا سرانجام در محيطهاي بسته و معين به حالت يكنواخت و معيني برسند.

 انتشار

به پراكندگي تدريجي مولكولهاي يك ماده را انتشار ساده مي­گويند. انتشار ملكولها سرانجام به حالت تعادل مي­رسد. مرحله تعادل وقتي است كه مولكولها به طور يكنواخت در محيط پراكنده شوند.

آيا مولكولها مي­توانند از پردهها عبور كنند. پاسخ به اين سؤال، به پرده، قطر منافذ آن و نوع مولكولها بستگي دارد. اگر ماده­اي از درون يك پرده بگذرد، آن پرده را نسبت به آن ماده نفوذ پذير مي­گويند.

يك ظرفي را كه با پرده­اي با سوراخهاي ريز نسبت به آب تراوا است مي­پوشانيم حال درون آن مايع رنگي مي­ريزيم و در ظرف آبي قرار مي­دهيم. مشاهده مي­كنيم كه آب درون ظزف بالا مي­رود. اما مولكولهاي محلول از آن سوراخها عبور نمي­كنند. به حركت آب از درون پرده نيمه تراوا اسمز مي­گويند.

اسمز حالت خاصي از انتشار است. هر جا غلظت محلول بيشتر شود، آب بيشتري جذب خواهد كرد. اينگونه جذب آب را فشار اسمزي يا غيروي اسمزي ميگويند. موادي چون آب و يون كلرويون پتاسيم كه در پرده محلول نيستند به آساني از غشا عبور ميكنند. در اين مورد فرض بر اين است كه سوراخهاي ريزي در غشاي سلول وجود دارد كه حتي با ميكروسكوپهاي الكتروني قابل مشاهده نيست و مولكولهاي آب ميتوانند مستقيماً از آنجا عبور كنند.

  نكاتي مهم درباره انتشار

هر مولکول يا يون حركتي كاملاً اتفاقي دارد و اين وضع، ربطي به جهت انتشار ندارد. در يك محلول انتشار هر نوع ماده، مستقل ار انتشار مواد ديگر است. سرعت انتشار به عواملي از قبيل: قطر ذرات، دما، بار الكتريكي ذرات و تفاوت غلظت دو محيط بستگي دارد. علاوه بر انتشار ساده و اسمز، دو حركت ديگر از خلال غشا تشخيص داده مي­شود. كه به انتشار تسهيل داده شده و انتقال فعال مرسومند. در اين دو نوع حركت انتشار، مولكولهايي به نام ناقل در غشا وجود دارد كه از جنس پروتئين است. اين مولکولها در يك سمت غشا با ماده عبوري تركيب مي­شوند و در سمت ديگر از آن جدا مي­شوند.

در مقايسه انتشار ساده با انتشار تسهيل شده و انتقال فعال، مشاهده ميشود كه ماده­اي در انتشار ساده از منطقه پر تراكم به منطقه كم تراكم انتقال داده مي­شود تا غلظت مساوي بين دو طرف پرده حاصل آيد.

در انتشار تسهيل داده شده، ماده از منطقه پر تراكم به منطقه كم تراكم ميرود، اما انتقال به وسيله مولكول ناقل صورت مي­گيرد. در انتقال فعال، مولكولهاي ناقل با صرف انرژي بعضي مواد را از بيرون سلول كه غلظت آن كمتر است به درون سلول كه غلظت آن بيشتر انتقال مي­دهد.

سلولهاي ريشه گياه، يونها را از آب درون خاك جذب مي­كنند. اما اغلب غلظت اين يونها در داخل سلول بيشتر از غلظت آنها در خارج از سلولهاست. در سلول بعضي از جانداران دريايي، ممكن است غلظت يون بيشتر از غلظت آن در دريا باشد. با اين حال همين سلولها يون را از آب تهيه مي­كنند. بعضي از سلولها مثل آميد، ميتوانند مولكولهاي بزرگ و حتي ذرات موادي را كه از غشاي آنها قابل عبور نيستند، جذب كنند. اين عمل سلول آندوسيتوز نام دارد. در هنگام عمل آندوسيتوز در غشاي پلاسمايي، فرورفتگيهايي پديد ميآيد و كيسه كوچكي به دور ذره غذايي پديد مي­آيد. سپس لبه­هاي كيسه به هم نزديك ميشوند، مي­چسبند، سپس در آن قسمت سلول واكوئل پديد ميآيد كه ذره غذايي در درونش قرار دارد. آنگاه با آنزيمهاي درون واكوئل، گوارش غذا آغاز مي­شود.

  اگزوسيتوز

بسياري از سلولها، مولكولهاي پروتئيني ميسازند كه از سلول خارج ميشوند، اين مولكولها در دستكاه گلژي بسته بندي ميشوند. بسته به سوي غشاي پلاسمايي به حركت درميآيد. غشاها با هم مي­آميزند و دهانه­اي به سمت خارج باز ميشود تا مواد ساخته شده، خارج شوند. اين عمل سلول اگزوسيتوز نام درد.

  سازمان پر سلولي

در جانوران تك سلولي، كليه اعمال حياتي، توسط همان يك سلول انجام ميگيرد. اما در جانوران پر سلولي، تقسيم كار وجود دارد و هر كدام از سلولها براي وظيفه خاصي، تخصص مي­يابند. مانند عمل تغذيه در لوله گوارش، تنفس و انتقال مواد در دستگاه گردش خون.

 بافتها

بافتهاي بدن را مي­توان به 4 گروه اصلي، پوششي، پيوندي، ماهيچهاي و عصبي، تقسيم كرد.

 بافت پوششي

اين بافت، سطح خارجي بدن و سطح داخلي اندامها و حفره­هاي درون بدن را ميپوشاند. سلولهاي بافت پوششي بسيار منتشره هستند. بافت پوششي كه سطح بدن را ميپوشاند نقش محافظت را بر عهده دارد. سلولهاي اين بافت به تدريج از قسمت سطح از بين مي­روند و به جاي آنها سلولهاي جديد پديد ميآيد. ديواره داخلي لوله گوارش از بافت پوششي يك لايه­اي ساخته شده است كه برخي از آنها عمل ترشح كردن را انجام ميدهند. بعضي از سلولها مي­توانند موادي را از خود عبور دهند؛ مثل:سلولهاي جداره نفرونها. اندازه و شكل و بافتهاي پوششي گوناگونند.

بافت پيوندي

در بين بافتها واطراف اندامها قرار دارد. بافت غضروفي، استخواني، خوني، اقسام تغيير يافته بافت پيوندي هستند. بخش اصلي بافت پيوندي را يك ماده زمينهاي، بين سلولي تشكيل ميهد كه سلولها و رشته­هاي پيوندي درون آن قرار گرفته­اند. اين ماده بين زمينه­اي ممكن است يك ماده نيمه جامد، مانند غضروف، جامد، مانند بافت استخواني، مايع، مانند خون باشد. بافت پيوني كه اعضاي بدن را مي­پوشاند، داراي رشته­هايي به نام، كلاژن است. كه موجب استحكام مي­شود و رشته­هاي ارتجاعي، خاصيت ارتجاعي بافت را سبب مي­گردد. بعضي از سلولهاي بافت پيوندي نيز، خاصيت بيگانه خواري دارند

انواع نشانگرهای ژنتیک

با وجـــود اینکه بهره مندی از علم ژنتیک و اصلاح نباتات، بیشترین نقش را در افزایش محصول و تولید فراورده های غذایی به عهده داشته است، به دلیل رشد روز افزون جمعیت،تلاش بیشتری برای چیرگی بر شرایط نامساعد محیطی، اعم از عوامل زیستی و غیر زیستی و افزایش کیفیت محصول لازم است. پیشرفت علوم و فناوری موجب بهره مندی متخصصان اصلاح نباتات از ماشین های پیشرفتۀ کشاورزی، ابزار دقیق آزمایشگاهی، روش های برتر جمع آوری اطلاعات و تجزیه و تحلیل رایانه ای آنها شده است. در سالهای اخیر، پیشرفت های تحسین برانگیزی که در زمینۀ زیست شناسی مولکولی و بیوتکنولوژی صورت گرفته، ابزار قدرتمندی را برای پژوهش های ژنتیک تفصیلی گیاهان عالی از جمله گیاهان زراعی فراهم کرده اند.شاید اساسی ترین و مفیدترین این ابزار نشانگرهای DNA باشند که همان تفاوت های قابل ثبت ردیف های بازی DNA موجود بین دو یا چند نمونه اند.امروزه اطلاعات به دست آمده از نشانگرهای DNA کاربردهای بسیاری دارند، که عمده ترین آنها در پزشکی قانونی، تشخیص بیماری های گیاهی و انسانی،قرنطینۀ گیاهی، پژوهش های ژنتیک تکاملی و فیلوژنتیک،طبقه بندی موجودات زنده و اصلاح نباتات است.

نشانگرهای مورفولوژیک:

کاربـــــــــردنشـانگرهای ژنــتـیـک بـه ده هــا سال پیش از کشف DNA به عنوان مـادۀ ژنـتـیـک،مــربـــوط می شود.نشانگرهای مورفولوژیکی که پیامد جهش های قابل رویت در مورفولوژی سازواره اند،از ابتدای این سده مورد استفاده بوده اند.صفات مورفولوژیکی که عمدتاً توسط یک ژن کنترل می شوند، می توانند به عنوان نشانگرهای ژنتیک مورد استفاده قرار گیرند.این نشانگرها شامل دامنۀ وسیعی از ژن های کنترل کنندۀ صفات فنوتیپی هستند و جزو نخستین نشانگرها به شمار می آیند و از زمان های بسیار دور یعنی از زمانی که محل ژن ها برروی کروموزوم مشخص شد، مورد استفاده قرار می گرفتند.این نوع نشانگرها دارای معایب زیادی از جمله موارد زیر هستند:

اغلب دارای توارث غالب و مغلوب بوده و اثرات اپیستازی و پلیوتروپی (Pleiotrpy) دارند؛

تحت تأثیر شرایط محیطی و مرحلۀ رشد موجودات قرار می گیرند؛

فراوانی و تنوع کمی دارند؛

گاهی برای مشاهده و ثبت آنها باید منتظر ظهور آنها ماند.این کار در مورد گیاهان چند ساله بسیار مشکل است؛

اساس ژنتیک بسیاری از نشانگرهای مورفولوژیک هنوز مشخص نشده است.

 نشانگرهای مولکولی DNA  و RNA :

نشانگرهای مولکولی فراوان و در هر موجود زنده ای مورد استفاده قرار می گیرند.اگرچه پتانسیل نشانگرهای مولکولی برای اصلاح کنندگان از حدود 75 سال پیش شناخته شده بود، ولی کاربرد آنها تا حدود 30 سال پیش به دلیل نبود نشانگرهای مناسب بسیار محدود بوده است. گسترش نشانگرهای DNA موجب به کارگیری روش های بسیاری برای غلبه بر مشکلات اصلاحی و ژنتیکی موجودات شده است. در سال های گذشته، از نشانگرهای DNA برای مطالعات پایه ای و کاربردی در انسان، حیوان و گیاه استفاده شده است.

کشف انواع مختلف آنزیم های محدودگر(Restrictionenzymes)توسط اسمیت و ویلکوکس(1970)، همچنین کشف واکنش زنجیره ای پلیمراز(P.C.R)توسط مولیس و فالونا (1987) فرصت مناسبی را برای بررسی تنوع و تفاوت موجودات مختلف در سطح DNA امکان پذیر کرده است.توسعۀ نشانگرهای مولکولی DNA عصر جدیدی را در علم ژنتیک گشوده است، به طوری که به کمک این نشانگرها ایجاد نقشه های فیزیکی و ژنتیکی در موجودات زنده و همچنین شناسایی ژن های کنترل کنندۀ صفات کیفی و کمی امکان پذیر شده است.

تا کنون تعداد زیادی از نشانگرهای DNA معرفی شده اند و در تجزیه های ژنتیک موجودات مورد استفاده قرار گرفته اند، این نشانگرها از نظر بسیاری از ویژگی ها مانند درجه چندشکلی، غالب یا همبارز بودن ، تعداد جایگاه های تجزیه شده در هر آزمایش ، توزیع در سطح کروموزوم ، تکرار پذیری، نیاز یا عدم نیاز به توالی یابی DNA الگو و هزینۀ مورد نیاز با همدیگر متفاوت اند.انتخاب بهترین نشانگر به هدف مطالعه (انگشت نگاری، تهیۀ نقشۀ پیوستگی، ژنتیک جمعیت و روابط تکاملی) ...... و سطح پلوئیدی موجود مورد مطالعه بستگی دارد.

در اوایل دهۀ 1980 بوتستین و همکارانش استفاده از تفاوت طول قطعه های حاصل از هضم یا RFLP را برای مطالعۀ مستقیم DNAو یافتن نشانگرهای ژنتیک جدید پیشنهاد و معرفی کردند.این تحول از پیامدهای منطقی کشف آنزیم های محدودگر بود. این آنزیم ها، آنزیم های بسیار اختصاصی اند که ردیف های ویژه ای را روی مولکول DNA شناسایی کرده و آنها را از محل خاصی (نقطه برش) قطع می کنند. نشانگرهای DNA در مدت یک دهه تکاملی شگرف و تحسین برانگیز داشته اند. علاوه بر RFLP که هنوز هم از قدرتمندترین و معتبرترین نشانگرهای DNA است، انواع مختلف نشانگرهای DNA با تفاوت های زیادی از نظر تکنیکی و روش تولید،نحوۀ کاربرد،امتیازبندی، تجزیه و تحلیل و تفسیر نتایج به سرعت ابداع و معرفی شدند.

بدون تردید، ابداع و معرفی واکنش زنجیره ای پلیمراز یا PCR بیشترین نقش را در توسعه و تکامل نشانگرهای DNA داشته است. PCR یک روش سریع تکثیر آزمایشگاهی قطعه یا قطعه های مورد نظر DNA است. به دلیل اهمیت و نقش مؤثر PCR در تحول و تکامل روزافزون فناوری نشانگرهای DNA آن را به دو دستۀ کلی :نشانگرهای DNA مبتنی بر کاربرد واکنش زنجیره ای پلیمراز و نشانگرهای DNA غیر مبتنی بر کاربرد این روش طبقه بندی کردند.

نشانگرهای DNA گروه بزرگی از نشانگرها را تشکیل می دهند. این نشانگرها سیر تحول و تکامل خود را به پایان نرسانده اند و ابداع و معرفی روش های متنوع و جدیدتر ثبت و مشاهدۀ تفاوت های ژنتیک بین موجودات از طریق مطالعۀ مستقیم تفاوت های موجود در بین ردیف DNA آنها همچنان ادامه دارد.

 

                                                          این عکس به مطلب نوشته شده مربوط نیست وحالتی تزئینی دارد.

 

 

 

 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: پنجشنبه 14 اسفند 1393 ساعت: 16:08 منتشر شده است
برچسب ها : ,,,
نظرات(0)

تحقیق درباره سلول های بنیادی

بازديد: 514

 

مقدمه

درون جنین میلیونهاسلول بنیادی وجود دارد که بزرگی همه آنها کمتر از یک نقطه است. این سلولها ازپتانسیل بالایی برخوردار هستند و می‌توانند طی فرایند تمایز یابی به سلولهایبافتهای مختلف در بدن تبدیل شوند. پتانسیل تقریبا نامحدود این سلولها آنها را درکانون تحقیقات پزشکی قرار داده است. تصور کنید که این سلولها بتوانند حافظه بیمارمبتلا به آلزایمر را به وی برگردانند.
پوستی را که در اثر سانحه آسیب دیدهجایگزین کنند یا بیمار معلولی را قادر به راه رفتن دوباره کنند! و .... اما پیش ازآنکه دانشمندان نحوه استفاده از سلولهای بنیادی را برای مقاصد پزشکی فرا بگیرندباید دریابند که چگونه می‌توانند قدرت این سلولها را تحت کنترل خود درآورند. آنهاباید نحوه استفاده از سلولهای بنیادی و تبدیل آنها به بافتها یا اندامهای خاصی رافرا بگیرند تا بتوانند یک بیمار یا بیماری علاج کنند.

 

Farid ghandi

سلولتخم لقاح یافته

سلولبنیادی چیست؟

سلول بنیادی سازنده بدنانسان است. سلولهای بنیادی درون جنین در نهایت به سلول ، بافت و اندامهای مختلف بدنجنین تبدیل می‌شوند. برخلاف یک سلول معمولی که قادر است با تکثیر شدن چندین سلول ازنوع خود را بوجود آورد سلول بنیادی همه منظوره و بسیار توانمند است و وقتی تقسیمشود، می‌تواند به هر یک از انواع سلولها در بدن تبدیل شود. سلولهای بنیادی ازقابلیت خود نوسازی هم برخوردارند. سلولهای بنیادی خود بر دو نوع هستند. سلولهایبنیادی جنینی و سلولهای بنیادی بالغ.

سلولهای بنیادی جنینی از جنین بدستمی‌آیند. یک جنین 3 تا 5 روزه حاوی سلولهای بنیادی است که به شدت در حال تکثیرهستند تا اندامها و بافتهای مختلف جنین را بسازند. افراد بالغ نیزدر قلب،  مغز،  مغزاستخوان  ،  ریه ها واندامهای دیگر خود سلولهای بنیادی دارند. این سلولها مجموعه‌های درونی مخصوص ترمیمهستند و سلولهایی که بر اثر بیماری ، مصدومیت و کهولت سن صدمه می‌بینند دوبارهتولید می‌کنند.

تاریخچه

در اوایلدهه 1980 میلادی دانشمندان نحوه قرار گرفتن سلولهای بنیادی جنینی از موش و کشت آنهارا در آزمایشگاه فرا گرفتند و در سال 1998 برای اولین بار در سلولهای بنیادی جنینیانسان را در آزمایشگاه تولید کردند. اما این سوال پیش می‌آید که پژوهشگران جنینانسان را از کجا بدست می‌آورند؟ جنین را می‌توان با تولید مثل ، تلفیق  اسپرم وتتخمک یا شبیه سازی تولید کرد.

 

Farid Ghandi

جنیندر مرحله 8 سلولی

راههای تولید جنین:

1-تولید مثل

این راهطبیعی تولید جنین است.

2-تلفیق گامتها در شرایط آزمایشگاه

پژوهشگران تمایل زیادی بهتولید جنین از طریق تلفیق اسپرم و تخمک ندارند. با این وجود بسیاری از آنها جنینهایبارور شده در کلینیکهای بارورسازی استفاده می‌کنند. گاهی اوقات زوجهایی کهنمی‌توانند بطور طبیعی بچه‌دار شوند و می‌خواهند به شیوه مصنوعی صاحب فرزند شوندچندین جنین بارور شده تولید می‌کنند که همگی آنها مورد استفاده قرار نمی‌گیرند. وجنینهای اضافی را برای انجام تحقیقات علمی اهدا کنند.

شبیهسازی درمانی

در این شیوه یک سلول ازبیماری‌ که نیازمند درمان از طریق سلول بنیادی است با تخمک اهدا شده ادغام می‌شود. پس از آن  هسته تخمک جدا شده و هسته سلول شخص بیمار جایگزین آن می‌گردد. سپس تخمک حاصل ازطریق شیمیایی یا الکتریکی تحریک می‌گردد تا  تقسیم سلولی انجام دهد. جنین حاصل موادژنتیکی بیمار را حمل خواهد کرد که می‌تواند پس زدن سلولهای بنیادی را پس از پیوندآنها به میزان زیادی کاهش دهد.

تکثیر سلولهای بنیادی در آزمایشگاه

جنین 3 تا 5 روزه رابلاستوسیستمی‌نامند. یک بلاستوسیست تودهای مشکل از 100 سلول و یا بیشتر است. سلولهای بنیادی سلولهای درونی بلاستوسیستهستند که در نهایت به هر سلول ، بافت و اندام درون بدن تبدیل می‌شوند. دانشمندانسلولهای بنیادی را از بلاستوسیست جدا کرده و آنها را درون ظرف پتری دیش درآزمایشگاه کشت می‌دهند. پس از آنکه سلولها چندین بار تکثیر شدند و میزان آنها ازگنجایش ظرف کشت فراتر رفت آنها را از آن ظرف برداشته و درون چندین ظرف قرارمی‌دهند. سلولهای بنیادی جنینی که چندین ماه بدون ایجاد تمایز پرورش یافته‌اند خطسلول بنیادی نامیده می‌شوند.

این خطوط سلولی را می‌توان منجمد کرده و بینآزمایشگاهها به اشتراک گذاشت. کار با سلولهای بنیادی بالغ برای دانشمندان سخت‌تراست. زیرا استخراج و کشت آنها نسبت به سلولهای بنیادی جنینی دشوارتر است. یافتنسلولهای بنیادی در بافت بالغ به تنها مشکل است بلکه دانشمندان هم برای کنترل آنهادر آزمایشگاه با مشکل رو به رو هستند. اما حتی کنترل سلولهای بنیادی جنینی هم که بهخوبی در آزمایشگاه پرورش می‌یابند آسان نیست دانشمندان همچنان در تلاشند تا اینسلولها را به رشد در انواع خاصی از بافت وادارند.

موانع بر سر راه استفاده از سلول بنیادی

یکی از این موانع مشکل پسزدن است. اگر سلولهای بنیادی جنینی اهدا شده به یک بیمار تزریق شوند ممکن است سیستمایمنی بدن بیمار این سلولها را مهاجمان خارجی تلقی کرده و به آنها حمله کند. امااستفاده از سلولهای بنیادی بالغ تا حدودی از این مشکل می‌کاهد. زیرا  سیستم ایمنیبدن بیمارسلولهای بنیادی خود بیمار را پس نمی‌زند.

کاربرد سلولهای بنیادی در بازسازی سلولها

از سلولهای بنیادی می‌توانبرای بازسازی سلولها یا بافتهایی استفاده کرد که بر اثر بیماری یا جراحت صدمهدیده‌اند. این نوع درمان به درمان سلولی معروف است. یکی از کاربردهای بالقوه اینشیوه درمان ، تزریق سلولهای بنیادی جنینی در قلب برای بازسازی سلولهایی است که براثر حمله قلبی صدمه دیده‌اند. در یکی از تحقیقات ، پژوهشگران زمینه  سکته قلبیچندین موش رافراهم کرده و پس از آن سلولهای بنیادی جنینی را درون قلب آسیب دیده موشها تزریقنمودند. در نهایت سلولهای بنیادی  بافت ماهیچهآسیب دیده را بازسازی کردندو کارکرد قلب موشها را بهبود بخشیدند.
از سلولهای بنیادی می‌توان برایبازسازی سلولهای مغزی بیماران مبتلا بهپارکینسون استفاده کرد. اینبیماران فاقد سلولهایی هستند که ناقل عصبی موسوم بهدوپامینرا تولید می‌کنند. بدون وجود این پیکشیمیایی حرکت بیماران مبتلا به پارکینسون نامنظم و منقطع است. و این افراد ازارزشهای غیر قابل کنترل رنج می‌برند. در تحقیقات انجام شده روی موشها پژوهشگرانسلولهای بنیادی جنینی را در مغز موشهای مبتلا به بیماری پارکینسون تزریق کردند وشاهد آن بودند که سلولهای بنیادی ، موشها را بهبود بخشیدند. دانشمندان امیدوارند کهروزی بتوانند این موفقیت خود را در انسانهای مبتلا به پارکینسون هم تکرار کنند.


 

Farid Ghandi

جنیندو ماهه

کاربرد سلولهای بنیادی در تولید اندام کامل

شاید دانشمندان بتوانند حتییک اندام کامل را در آزمایشگاه پرورش داده و آن را جایگزین اندامی کنند که بر اثربیماری آسیب دیده است. برای این کار باید نوعی چارچوب از جنس پلیمرزیست تجزیه پذیر را به شکلاندام مورد نظر بسازند و سپس آن را با سلولهای بنیادی جنینی یا بالغ بارور سازند. پس از آن عوامل رشد مخصوص آن اندام افزوده می‌شوند تا پرورش اندام را تحت کنترل وهدایت درآورند.
پس از آنکه چارچوب با بافت خاص آن اندام پوشیده شد آن را بهبیمار پیوند می‌زنند. با بوجود آمدن بافت از سلولهای بنیادی چارچوب تجزیه شده و درنهایت یک گوش، کبدیا هراندام دیگر باقی خواهد ماند. از جمله بیماریهایی که احتمالا روزی یا درمان سلولیمعالجه خواهند شد می‌توان به پارکینسون ، دیابت، بیماری قلبی ، صدمه بهنخاع ، سوختگی ، آلزایمر و ضعف بینایی اشاره کرد.

اختلاف نظر در مورد تحقیقات سلول بنیادی

تحقیقات سلول بنیادی یکی ازبزرگترین موضوعاتی است که اجتماعات علمی و مذهبی را رو در رو قرار داده است و هستهاین اختلاف یک سوال است حیات چه موقع آغاز می‌شود؟ برای بدست آوردن سلولهای بنیادیدانشمندان یا باید از جنینی استفاده کنند که بارور شده است و یا به روش شبیه سازی ،جنینی را از سلول بدن بیمار و تخمک اهدایی بسازند. در هر دو صورت برای جدا کردنسلولهای بنیادی یک جنین باید جنین از بین برود. و اگرچه این جنین تنها 4 یا 5 سلولرا دربرمی‌گیرد. بعضی از رهبران مذهبی بر این باورند که این کار همانند گرفتن جانیک انسان است.

شبیهسازی انسان

مساله دیگر مورد اختلاف شبیهسازی انسان است. اگر دانشمندان بتوانند جنینی را در آزمایشگاه خلق کنند آیانمی‌توانند آن جنین را درونرحمیک مادر دیگر پیوند زده و زمینه رشد یک نوزاد را فراهم کنند؟! ایده شبیهسازی انسان افکار هولناک و مخوف پرورش ابر انسانها با ضریب هوشی بسیار بالا وقابلیتهای فیزیکی مانند قهرمانان خیالیسوپرمنوبت منو یا خلق کودکانیکه صرفا برای استفاده از اندام پرورش می‌یابند را تداعی می‌کند.
هنگامی کهگروهی از محققان اسکاتلندی در سال 1997 اعلان کردند که توانسته‌اند با موفقیتگوسفندی را به نامدالیشبیه سازی کنندوحشت ناشی از شبیه سازی شدت گرفت. حتی با افزایش آگاهی و شناخت دانشمندان ازسلولهای بنیادی و توانایی کنترل آنها بحثهای اخلاقی و سیاسی در این مورد داغ‌تر ووخیم‌تر می‌شود. بسیاری از دولتها محدودیتهای شدیدی را بر تحقیقات سلول بنیادیاعمال کرده‌اند و تامین بودجه این تحقیقات را با مشکلات زیادی مواجه نموده‌اند.

Farid Ghandi

 



 

آینده بحث

مخالفتجامعه جهانی با پدیده شبیه سازی مولد انسان گسترده و عام‌الشمول است. اما به نظرمی‌رسد بسیاری از کشورها با انجام تحقیقات پزشکی برای مقابله با بیماری‌هایی چونپارکینسون ،آلزایمر،‌ بیماریهای قلبیو سرطانازطریق تولید جنینهایآزمایشگاهی و همچنین تحقیق و بررسی روی آنها به منظور ایجاد توسعه و پیشرفت در علومپزشکیو مهندسیژنتیک بدون آنکه هدف این تحقیقات تولد صرف انسان شبیه سازی شده باشد، مخالفت چندانی نداشتهباشند. با وجود این ، برخی کشورها از جمله واتیکان مخالفت صریح و موکد خود را دراین مورد ابراز داشته و با عمل شبیه سازی انسان با هر هدف و مقصودی که باشد،مخالفند.
از جمله استدلالهای این گروه برای مخالفت با شبیه سازی این است کهما با این کار به تولید انسان‌هایی اقدام می‌کنیم که در نهایت آنها را از میانمی‌بریم و از اینرو ، در جهتی حرکت خواهیم کرد که منجر به نقض قواعد اساسی حقوق بشرو کرامت انسانی خواهد شد. آیا اصولا ما حق داریم که با انسان زنده آزمایشهای علمیبکنیم . بعضیها می‌گویند که اینکار به بشریت خدمت خواهد کرد ممکن است این گفته درستباشد .

 

عليرغم پيشرفت‌هاي بزرگي كه تاكنون در استفاده از سلول‌هاي بنيادي براي مقاصد درماني به‌دست آمده است، بشر هنوز در ابتداي اين راه است و همچنان تحقيقات گسترده‌اي براي عملي ساختن ايده‌هاي محققان در دست انجام است. در اين مطلب از زبان دكتر عليرضا قدسي‌زاد، رزيدنت سال پنجم جراحي قلب در دانشگاه دوسلدورف آلمان، به برخي از اين چشم‌اندازها و زمينه‌هاي تحقيقاتي جديد اشاره شده است:

استخراج، نگهداري و استفاده از سلول‌هاي بنيادي بند ناف

در حال حاضر، يكي از مطرح‌ترين ايده‌ها در زمينه سلول‌هاي بنيادي، استفاده از قابليت‌هاي منحصر به فرد سلول‌هاي بنيادي بند ناف ( Cord blood ) است. مزيت اصلي اين سلول‌ها آن است كه بسيار اوليه ( Primitive ) بوده و توان تمايز بالايي دارند. به‌طوري‌كه بر اساس نتايج تحقيقات انجام شده، منشا تمام سلول‌هايي كه پس از تيمارهاي آزمايشگاهي و پيوند به بدن توانسته‌اند به‌طور كامل به سلول‌هاي عضلاني قلب تمايز يابند، از سلول‌هاي ACC133 + بند ناف بوده است. البته بر اساس نتايج منتشر شده در برخي از مقالات، علاوه بر سلول‌هاي مذكور، سلول‌هاي مشتق از مغز استخوان ( BMCS ) شامل تمام انواع منونوكلئرها ( whole MNC population ) و سلول‌هاي ACC133 + مشتق از مغز استخوان هم قادرند به سلول‌هاي عضلاني قلب تبديل شوند. البته به نظر مي‌رسد نتايج اخير به بررسي‌ها و تحقيقات بيشتري نياز داشته باشد.
استخوان به سلول‌هاي ماهيچه‌اي قلبي انجام شده‌ است، نشان مي‌دهند در تمام موارد، اين سلول‌ها از نوع سلول‌هاي
ACC133 + با منشا بند ناف بوده‌اند.

مزيت ديگر اين سلول‌ها، نداشتن مشكل دفع پيوند سلول‌هاي بنيادي جنيني است. چراكه از خود فرد اخذ مي‌شوند و در سال‌هاي بعدي زندگي،دوباره به همان شخص تزريق مي‌شوند. بر اين اساس، اين ايده در دنيا مطرح شده است كه نمونة سلول‌هاي بندناف هر شخص در ابتداي تولد گرفته شود و براي سال‌هاي بعد براي خود فرد ذخيره شود. حتي در حال حاضر، عليرغم اين‌كه هنوز وضعيت روشني براي پيوند سلول‌هاي بند ناف وجود نداشته و سؤالات زيادي در مورد احتمال رد پيوند سلول‌هاي بيگانه (هترولوگ) مطرح است؛ اما با اين‌حال توصيه مي‌شود براي افرادي كه در مراحل وخيم بيماري قلبي بوده و در انتظار دريافت قلب پيوندي به‌سر مي‌برند، در كنار تجويز داروهاي سركوب‌كنندة سيستم ايمني، از روش پيوند سلول‌هاي بندناف به‌عنوان يك روش كمكي استفاده كنيم. با اين عمل، بيمار شانس بيشتري براي زنده ماندن تا زمان دريافت قلب را خواهد داشت. اين روش به‌ويژه در بيماران كهنسال كه سلول‌هاي بنيادي مغز استخوان آنها براي پيوند كافي نيست، از اهميت بالاتري برخوردار است. از اين‌رو، امروزه در اغلب كشورها بانك‌هاي ويژه‌اي براي جداسازي و نگهداري سلول‌هاي بنيادي بندناف نوزادان تأسيس شده است.

سلول‌درماني و مهندسي بافت

در حال حاضر علاوه بر سلول‌هاي بندناف،‌ تحقيقات وسيعي بر روي سلول‌درماني ( Cell therapy ) با استفاده از سلول‌هاي بنيادي جنيني ( Embryonic stem cell ) و مهندسي بافت ( Tissueengineering ) در حال انجام است كه آيندة روشني خواهد داشت. براي مثال، با استفاده از روش‌هاي مهندسي بافت مي‌توان به كمك بيوراكتورهاي ويژه،‌ لايه‌هاي نازكي از بافت‌هاي گوناگون را تهيه و براي مقاصد مختلف استفاده كرد.

تلاش براي تمايز سلول‌هاي بنيادي قبل از پيوند

نكتة ديگري كه در زمينة استفاده از سلول‌هاي بنيادي براي درمان بيماري‌هاي مختلف از جمله ضايعات قلبي، قابل توجه است، امكان استفاده از سلول‌هاي تمايزيافته به‌جاي سلول‌هاي اولية بنيادي است. در حال حاضر، فقط از سلول‌هاي بنيادي تمايزنيافته براي اين منظور استفاده مي‌شود. اما تحقيقات زيادي در حال انجام است تا با استفاده از ابزار مهندسي ژنتيك، ايدة بكارگيري از سلول‌هاي تمايزيافته عملي شود . براي مثال، در مورد سلول‌هاي ماهيچه‌اي قلب، بسياري از ژن‌هاي دخيل در تمايز يافتن سلول‌هاي بنيادي به سلول ميوكارد قلب، شناخته شده‌اند كه از آن جمله مي‌توان به ميوكاردين (قوي‌ترين ژن القاگر در توليد ماهيچة قلبي)، اس آر اف  Serum Response Factor) )،‌ ژن‌هاي GATA 4 ، 5 GATA و مولكول‌هاي كارديوگنول C و D (كه تمايز سلول‌هاي بنيادي به سلول‌هاي ميوكارد قلب را از 30 درصد به 95 درصد افزايش مي‌دهند) اشاره كرد. به‌عبارت ديگر، با فعال كردن اين ژن‌ها در داخل سلول‌هاي بنيادي مي‌توان ابتدا در شرايط آزمايشگاهي سلول‌هاي قلبي را تهيه كرد و سپس آن‌ها را به بيمار پيوند زد.

 البته در حال حاضر، مشكلاتي در اين مسير وجود دارد. براي مثال، حتي اگر بتوان مخلوطي با خلوص 95 درصد از سلول‌هاي قلبي را از اين طريق به‌دست آورد، امكان پيوند آن‌ها به بيمار وجود ندارد؛ چرا كه 5 درصد باقيماندة سلول‌ها متفاوت بوده و قابليت بالايي براي ايجاد سرطان دارند. به هر حال يكي از ايده‌هاي ارزشمند در زمينة سلول‌درماني، تمايز سلول‌ها قبل از پيوند به بدن است كه اميد مي‌رود برخي از مشكلات تكنيكي آن نيز در آيندة نزديك حل شود.

استفاده از سلول‌هاي بنيادي براي ترميم ضايعات كبدي

پيوند سلول‌هاي بنيادي علاوه بر بيماران قلبي در ساير بيماران نيز نتايج خوبي را نشان داده است. براي مثال، در حال حاضر اگر بيماري دچار سرطان كبد باشد، جراح مجبور است براي جلوگيري از انتشار سرطان (متاستاز)‌ به بخش‌هاي ديگر بدن، بخش سرطاني كبد را نابود كند. براي اين منظور معمولاً طي دو عمل جراحي هم‌زمان كه اصطلاحاً پارشيال هپاتكتومي و پي وي اي (Vein EmbolizationPortal ) ناميده مي‌شوند، خون ناحية سرطاني كبد را قطع مي‌كنند تا بافت سرطاني به تدريج نابود شود. در عين حال چون بخش باقيماندة كبد بايد بتواند وظايف كل كبد را به عهده گيرد، لازم است تا اين اعمال جراحي به نحوي انجام شود كه بخش سالم باقيمانده، فرصت تكثير ( Proliferation ) را پيدا كند و در نهايت عملكرد كبد كامل را ايفا نمايد. براي اين منظور، حداقل 6 هفته زمان لازم است تا بخش باقيمانده و سالم كبد تكثير شود. اما نتايج تحقيقات نشان داده كه با سلول‌درماني و پيوند سلول‌هاي بنيادي بالغ ردة‌ ACC133 + به بخش سالم كبد، اين مدت زمان به 2 هفته كاهش مي‌يابد. با اين كار نه تنها كبد فرد بيمار در مدت زمان كمتري ترميم مي‌شود، بلكه با خارج كردن سريع‌تر بخش سرطاني از بدن، احتمال بروز متاستاز و دست‌اندازي سرطان به بخش‌هاي ديگر بدن فرد نيز كاهش مي‌يابد. لازم به ذكر است كه بر اساس تحقيقات انجام شده، پيوند سلول‌هاي ACC133 + به رت‌ها ( Rat نوعي حيوان آزمايشگاهي) باعث افزايش رگ‌زايي در بافت توموري شده است. البته ما نيز در مركز خود (واقع در دانشگاه دوسلدورف آلمان) اين عمل را بر روي سه بيمار انجام داده‌ايم كه تاكنون نتايج منفي دربرنداشته است.

 


موضوع تحقیق:

 

 

سلول های بنیادی

 

 

 

نام دبیر:

آقای باطانی

 

 

 

گرد آورنده:

 

بیژن توکلی

 

 

دبیرستان مالک اشتر

 

 

کلاس:202

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: پنجشنبه 14 اسفند 1393 ساعت: 16:07 منتشر شده است
برچسب ها : ,,,
نظرات(0)

تحقیق درباره سلول گیاهی

بازديد: 1105

 

سلول گیاهی

مقدمه

سلول واحد ساختاری مشترک در تمام موجودات زنده است. سلول عنصری مستقل ، کوچک و دارای اندازه میکروسکوپی است. محتویات سلولی مجموعه‌ای از اجزا با ساختاری بسیار پیچیده و ترکیبات خاص است. تمام ظواهر و پدیده‌های حیاتی و واکنشهای موجود ، ناشی از فعالیت محتویات پروتوپلاست درون سلولی است. سلولهای گیاهی نسبت به سلولهای جانوری دارای اشکال متنوعتری هستند. سلول‌های گیاهی دارای اشکال چند ضلعی با اقطار مساوی و منظم و یا کشیده هستند و علاوه بر آن سلولهای گیاهی ، محصور در غشای شکل دهنده نسبتا سخت و محکم و مقاوم هستند که گاه نازک و گاهی ضخیم است.

در یک توده سلولی همگن سازنده یک بافت ، همه سلولها دارای یک اندازه و یک شکل و معمولا چند وجهی‌اند. در گیاهان آلی اندازه سلولها متناسب با کار آنهاست و بر حسب ماهیت بافت و نقشی که در گیاه دارند اندازه آنها متفاوت است. اندازه و طول سلولهای سازنده پیکر گیاهان به ماهیت و ویژگی آن سلول بستگی دارد و به طول ملکولهای پروتئینی موجود در آنها و همچنین به میزان فعالیت هسته سلول و دوره استراحت آن ارتباط دارد.

سیتوپلاسم هر دو یاخته مجاور به وسیله منافذ موجود (پلاسمودسم‌ها) با هم ارتباط دارند. غشای سیتوپلاسمی از یک لایه دو مولکولی فسفولیپید تشکیل یافته است که پروتئینها به دو صورت سطحی و عمقی در آن غوطه‌ورند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. زمینه سیتوپلاسم اساسی‌ترین قسمت درونی یاخته را تشکیل می‌دهد، زیرا اکثرا اعمال بیوسنتزی یاخته در آن صورت می‌گیرد. اندامکها در این زمینه قرار دارند. یکی از ویژگیهای سیتوپلاسم جنبش دائمی آن است که در اثر انقباض ریزرشته‌ها بوجود می‌آید، ولی ریزلوله‌ها به این جریان جهت می‌دهند.

روش مشاهده سلول گیاهی

ساده‌ترین راه مشاهده سلول گیاهی ، مطالعه سلولهای اپیدرم فلس پیاز است. اپیدرم فلس پیاز در زیر میکروسکوپ با بزرگنمایی ضعیف به صورت سلولهای چند وجهی کشیده‌ای است که بطور منظم که هم قرار داشته و بهم چسبیده‌اند. چنانچه این اپیدرم را با محلول رقیق یدیدوره آغشته سازیم هسته سلولها بطور محسوسی مشخص می‌گردد. در هسته یک یا دو هستک به صورت نقاط روشن دیده می‌شود. علاوه بر هسته در داخل سلولها واکوئل یا (حفره‌های سیتوپلاسمی) نیز وجود دارد که در ابتدا کوچک و پراکنده هستند و با رشد سلول بهم ملحق شده ، حفره‌هایی واحد و بزرگ را تشکیل می‌دهند.

در سلولهای پیر و مسن که واکوئلها قسمت اعظم فضای درونی آنها را فرا می‌گیرند هسته به گوشه‌ای رانده شده ، سایر محتویات سلول به صورت ورقه نازک در اطراف واکوئل مرکزی چسبیده به غشا باقی می‌مانند. به علت چسبندگی و یکی بودن غشای سیتوپلاسمی با غشای سلولزی لذا غشای سیتوپلاسمی بطور عادی قابل مشاهده نیست ولی با اضافه کردن چند قطره محلول آب و نمک 20 درصد و ایجاد کیفیت پلاسمولیز غشای سلولی از غشای سلولزی جدا و قابل رویت می‌گردد.


دیواره یاخته‌ای

در پیرامون اغلب یاخته‌های گیاهی و بعضی از یاخته‌های جانوری ، دیواره‌ای به نام دیواره یاخته‌ای وجود دارد. دیواره یاخته‌ای در یاخته‌های گیاهان ساختار نسبتا سخت سلولزی دارد و نوعی اسکلت بیرونی را ایجاد می‌کند که به این یاخته‌ها شکل هندسی و نسبتا ثابتی می‌دهد. این دیواره که دیواره نخستین نامیده می‌شود، بوسیله پروتوپلاسم زنده یاخته ایجاد می‌شود و وجود آن اساسی‌ترین وجه تمایز بین گیاهان و جانوران است. دیواره بین دو یاخته شامل شامل سه بخش است: هر یک از دو یاخته مجاور هم ، دیواره نخستین را تولید می‌کند و بین آن دو ، لایه بین یاخته‌ای به نام تیغه میانی مشترک بین دو یاخته وجود دارد.

جنس تیغه میانی از ترکیبات پکتینی ، مانند پکتین ، است. در نتیجه افزایش سن یاخته ، ممکن است مواد دیگری ساخته شوند و از سمت داخل یاخته به صورت لایه‌ای روی دیواره نخستین قرار بگیرند که دیواره دومین یا پسین نام دارد. ارتباط بین دو یاخته از راه پلاسمودسمها صورت می‌گیرد. پلاسمودسمها در دیواره‌های نخستین در سوراخهای ریز دیواره ، جایی که دیواره فاقد تیغه میانی است، بوجود می‌آیند و سیتوپلاسم از آن محلها از یاخته‌ای به یاخته دیگر جریان می‌یابد.

غشای سلولی

غشای سیتوپلاسمی از یک لایه دو مولکولی (دو ردیفی) فسفولیپید ساخته شده که هر مولکول آن شامل یک سر آب دوست و یک دم آب گریز است. استقرار این دو ردیف مولکول در مقابل یکدیگر طوری است که دمهای آب گریز به طرف داخل و در مقابل یکدیگر و سرهای آب دوست به طرف خارج قرار گرفته‌اند. مولکولهای پروتئین در سطح بیرونی یا درونی و یا در تمام غشا وجود دارند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. این غشا چون سدی نیمه تروا عمل می‌کند، نیمه تراوا بودن غشا عامل اصلی در نقش آن است.

 سیتوپلاسم

سیتوپلاسم شامل تشکیلات یاخته‌ای است که ساختاری نیمه شفاف ، بی‌شکل و تقریبا یکنواخت دارد و خاصیت شکست نور در آن کمی بیش از آب است. سیتوپلاسم پس از مرگ یاخته با رنگهای اسیدی آنیلین رنگ می‌گیرد، یعنی اسیدوفیل است. برعکس ، سیتوپلاسم زنده تقریبا خنثی است. زمینه سیتوپلاسم را هیالوپلاسم گویند. در هیالوپلاسم دو دسته عناصر به حالت شناور وجود دارند: یک دسته ضمایم دائمی مانند میتوکندریها ، پلاستها ، دستگاه گلژی و غیره که اندامک نامیده می‌شوند و دسته دیگر مواد غیر دائمی حاصل از اعمال زیست شیمیایی داخل هیالوپلاسم به نام اجسام ضمیمه هستند.

در هر حال محدوده هیالوپلاسم از طرف داخل ، غشای هسته و از طرف خارج ، غشای سیتوپلاسمی یاخته است. اندامکها عبارتند از: هسته ، میتوکندری ، شبکه آندوپلاسمی ، دستگاه گلژی ، ریزلوله‌ها و ریزرشته‌ها ، لیزوزوم‌ها ، واکوئلها و پلاستها. ذرات دیگری نیز در سیتوپلاسم دیده می‌شوند که از اندامکها کوچکترند و غشا ندارند و ریبوزوم نام دارند. اگر چه ریبوزومها غشا ندارد و اندامک به شمار نمی‌آیند، اما اهمیت زیادی در سوخت و ساز یاخته دارند. سیتوپلاسم در تبادلات یاخته ، مراحل مختلف سوخت و ساز و همچنین جنبشهای سیتوپلاسمی که ممکن است چرخشی و یا موضعی باشد، نقش دارد.


ریبوزومها

ریبوزومها ذرات کروی کوچکی هستند که به صورت آزاد یا روی شبکه‌ آندوپلاسمی درون سیتوپلاسم دیده می‌شوند. با استفاده از رادیوایزوتوپها توانسته‌اند محل تشکیل اجزای ریبوزوم را تعیین کنند. بدین سان معلوم شده که RNA ریبوزومی در هستک ساخته می‌شود و از آنجا به سیتوپلاسم منتقل می‌گردد. دو بخش ریبوزوم پس از ساخته شدن به یکدیگر می‌پیوندند و ریبوزوم کامل را بوجود می‌آورند. نقش اصلی ریبوزوم‌ها شرکت در ساختن پروتئین‌ها است، یعنی جایگاه ساخت پروتئین هستند.

شبکه آندوپلاسمی

شبکه آندوپلاسمی متشکل از لوله‌های تو خالی است. در برش به صورت مجاری ظریف غشایی توخالی ، با شاخه‌های فراوان و مرتبط با یکدیگر و یا به شکل مخازن پهن و بیش متراکم و پراکنده در تمام سیتوپلاسم مشاهده می‌شود. به بسیاری از نقاط دیواره بیرونی شبکه آندوپلاسمی ، تعداد فراوانی دانه‌های ریبوزوم متصل‌اند و به همین دلیل به دو صورت دانه‌دار و بدون دانه یافت می‌شوند: شبکه آندوپلاسمی دانه‌دار یا ناصاف که واجد ریبوزوم بوده و شبکه آندوپلاسمی بدون دانه یا صاف که فاقد ریبوزوم است. نقش شبکه آندوپلاسمی ، ذخیره و هدایت بعضی مواد درون یاخته و شرکت در تشکیل دیواره سلولزی یاخته و ایجاد ارتباط بین یاخته‌ها است.


دستگاه گلژی

دستگاه گلژی از واحهایی به نام تشکیل شده است. دیکتیوزومها سیستمهای غشایی ویژه‌ای هستند که از روی هم قرار گرفتن 5 تا 15 کیسه گرد و تخت با وزیکولهایی در لبه آنها تشکیل شده‌اند. هر کیسه را سیسترنا می‌نامند. دیکتیوزوم‌ها در بسته بندی پروتئین نقش دارند.

میکروبادیها

میکروبادیها وزیکولهایی هستند که از دیکتیوزومها جدا می‌شوند و خود اندامکهای ویژه‌ای را پدید می‌آورند. اینها ذرات کروی کوچکی هستند که در پیرامون آنها فقط یک غشا وجود دارد. میکروبادیها شامل پراکسی زوم و گلی اکسی زوم هستند.

لیزوزوم‌ها

لیزوزومها نیز از دیکتیوزوم‌ها جدا شده و خود اندامکهای ویژه‌ای را پدید می‌آورند و اندامکهایی به اندازه میتوکندریها و یا کوچکتر از آنها هستند که حاوی آنزیم‌های گوناگون می‌باشند و نقش آنها تجزیه سریع مولکولهای درشت و گوارش مواد هنگام تمایز یاخته‌ای است.

واکوئلها

بخش اعظم فضای یاخته‌های بالغ را واکوئل اشغال می‌کند که به صورت حفره یا کیسه‌ای است که غشایی به نام تونوپلاست آن را از سیتوپلاسم جدا می‌کند. درون واکوئل را مایعی به نام شیره واکوئلی پر کرده است. واکوئلها محل ذخیره آب و مواد آلی و کانی و همچنین تجمع مواد زاید سیتوپلاسم هستند.

میتوکندری

میتوکندریها ذرات ریزی هستند که به شکل کروی ، یا میله‌ای و یا رشته‌ای دیده می‌شوند و دارای دو غشا هستند: غشای بیرونی آنها صاف و غشای درونی به صورت چین خورده است. نقش میتوکندری ، تنفس است و ضمنا میتوکندری ، منبع انرژی می‌باشد. آنزیمهای تنفسی موجود در سطح غشای درونی آنها موجب شکستن مولکولهای گلوکز و اسیدهای آمینه و چربیها می‌شود و در نتیجه انرژی آزاد می‌گردد.

پلاستها

پلاستها را بر اساس رنگدانه‌هایی که ذخیره می‌کنند، به سه گروه کلروپلاست ، کروموپلاست و لوکوپلاست تقسیم می‌کنند. کلروپلاستها عموما قرصی شکل بوده و به علت دارا بودن کلروفیل ، سبز رنگ هستند. این اندامک غشایی دو لایه‌ای دارد. بخش درونی کلروپلاست شامل دو سیستم لایه‌ای و ماده دربرگیرنده این دو سیستم یعنی ماده زمینه‌ای یا دانه‌دار است. سیستم لایه‌ای دو بخش دارد: بخشی که گرانومها را تشکیل می‌دهد و بخش دیگری که آنها را بهم متصل می‌کند.

بخش درونی گرانوم به صورت کیسه‌های پهن شده‌ای مرتب شده‌اند و تیلاکوئید نام دارند و محل کلروفیلها هستند. نقش کلروپلاستها فتوسنتز است. لوکوپلاستها پلاستهای بی‌رنگی هستند که در یاخته‌های بشره و دیگر بافتهای بی‌رنگ وجود دارند. بعضی نشاسته ذخیره کرده و آمیلوپلاست نام دارند. گروه سوم پلاستها ، رنگدانه‌های زرد یا قرمزی داشته و کروموپلاست نامیده می‌شوند.


هسته

هسته از غشا و شیره هسته و دانه‌های کروماتین و یک یا دو هستک تشکیل شده است. DNA و RNA در هسته و میتوکندری و پلاست وجود دارند. هسته بزرگترین اندامک ساختار درونی یاخته‌های یوکاریوت است. اندازه نسبی هسته بر حسب سن و نوع یاخته فرق می‌کند.

تفاوت یاخته‌های گیاهی و جانوری

برای تمایز یاخته‌های گیاهی و جانوری می‌توان تفاوتهای زیر را بررسی کرد:

تفاوتهای متابولیسمی

تفاوتهای ساختاری

تفاوتهای تقسیمی

کلروپلاست

مقدمه

کلروپلاست معمولا از میتوکندری بزرگتر است و شباهت زیادی به میتوکندری دارد و جایگاه فرآیند فتوسنتز می‌باشد. کلروپلاستها جز گروهی از اندامکها هستند که این اندامکها پلاستید نام دارند. پلاستیدها در کلیه سلولهای گیاهی یافت می‌شوند و شامل اتیوپلاست ، کلروپلاست ، کروموپلاست ، آمیلوپلاست و الایوپلاست هستند.

 

وجه مشترک تمام پلاستیدها این است که تمام آنها از اندامک کوچک اولیه‌ای به نام پروپلاستید ایجاد می‌شوند. پروپلاستید که پیش ساز کلیه پلاستیدها است. بسته به بافت گیاه و پیامهای محیطی به انواع گوناگون پلاستها تمایز پیدا می‌کند. کلروپلاست تنها پلاستیدی است که کلروفیل دارد و عمل فتوسنتز را انجام می‌دهد.

تاریخچه

کلروپلاستها به دلیل رنگ داشتن رنگ سبز از اولین اندامکهایی هستند که در یاخته‌های گیاهی نظر پژوهشگران را به خود جلب کرده‌اند. ووشر در سال 1803 رده بندی جلبکهای رشته‌ای آب شیرین را بر بنای شکل ذرات سبز موجود در آنها قرار داد و آنها را به کونفروهای مارپیچی ، ستاره‌ای و لوله‌ای تقسیم کرد. در جلبکها کلروپلاستها ساختمان ساده‌تری دارند و اغلب آنهارا کروماتوفور می‌نامند. در گیاهان پیشرفته و عده‌ای از جلبکهای سرخ و قهوه‌ای کلروپلاستها کروی ، بیضوی و یا اغلب عدسی شکل هستند.


اندازه کلروپلاست

کلروپلاستها اندازه بسیار متفاوتی دارند. طول آنها از حدود 2 تا بیش از 30 میکرون می‌رسد. در گیاهان پیشرفته طول کلروپلاستها 3 تا 10 میکرومتر ، عرض آنها 1 تا 3 و ضخامتشان 1 تا 2 میکرومتر است. اندازه کلروپلاست به ویژگیهای وراثتی ، سن یاخته و دیگر ویژگیهای فیزیولوژیکی یاخته وابسته است. یاخته‌های پلی پلوئید کلروپلاستهای درشت‌تری از یاخته‌های دیپلوئید دارند.

رنگ کلروپلاست

کلروپلاستها به دلیل داشتن کلروفیل اغلب سبز رنگ هستند اما در برخی شرایط فیزیولوژیکی یا بر حسب نوع یاخته و میزان نسبی رنگیزه‌های غیر کلروفیلی ممکن است به رنگهای دیگری دیده شوند. در جلبکهای قهوه‌ای و قرمز ، رنگ سبز کلروفیل بوسیله سایر رنگیزه‌ها پوشیده شده است.

تعداد و محل کلروپلاست

تعداد کلروپلاست بر حسب نوع یاخته ، گونه گیاهی و سن یاخته تغییر می‌کند. تعداد کلروپلاستها در هر میلیمتر مربع برگ کرچک به حدود 400 هزار می‌رسد و یک درخت ممکن است تا 1012 عدد کلروپلاست داشته باشد. کلروپلاستها در یاخته‌های جلبکها و گیاهان مختلف در بخشهای مختلف یاخته قرار می‌گیرند. بطور معمول در بخشهای کناری یاخته که امکان دریافت نور بیشتر است فراوانی بیشتری دارند.

پوشش پلاستی

غشای خارجی

غشای خارجی کلروپلاست ضخامت متوسط حدود 60 آنگستروم دارد و از نوع غشاهای زیستی واحد است. این غشا صاف است، ریبوزوم ندارد و سد بین سیتوزول و درون پلاست است.

اطاق خارجی

اطاق خارجی یا فضای بین دو غشا وسعت متوسط حدود 100 تا 200 آنگستروم دارد و از مایعی دارای آب ، ترکیبات مختلف آلی ، مقدار کمی نمکهای کانی و یونهای حاصل از آنها پر شده است.

غشای داخلی

این غشا ویژگیهای عمومی شبیه غشای خارجی دارد. ضخامت متوسط آن حدود 60 آنگستروم است. گرچه غشای داخلی می‌تواند چین خوردگیهایی را به درون پلاست داشته باشد. اما نظریه کنونی بر این است که سیستمهای غشایی درونی کلروپلاست اساسا مستقل از غشای داخلی است.

اطاق داخلی

ماده زمینه‌ای یا استروما اطاق داخلی کلروپلاست را پر کرده است. در استروما اجزای قابل رویت با میکروسکوپ الکترونی مانند سیستم غشاهای درونی ، مولکولهای DNA مشابه با پروکاریوتها ، ریبوزومهای از نوع 70s به حالت منفرد یا پلی‌زوم. در استروما اغلب ذرات نشاسته نیز وجود دارد. استروما دارای آنزیمهای مختلف از جمله آنزیمهای واکنشهای مرحله تاریکی فتوسنتز و آنزیمهای لازم برای بیوسنتز پروتئینهاست.

سیستم غشایی درون کلروپلاست

در استرومای کلروپلاستها ساختمانهای غشایی زیادی وجود دارند که مقدار آنها و نوع آرایششان به حسب نوع گیاه و ویژگیهای فیزیولوژیکی یاخته‌ها متفاوت است. این ساختمانها تیلاکوئید نام دارند. این غشاها با سازمان یافتگی بسیار ویژه خود جایگاه انجام واکنشهای مرحله نوری فتوسنتز هستند.در روی این غشاها رنگیزه‌های نوری یافت می‌شود.

کلروپلاست جایگاه فتوسنتز

فتوسنتز فرایندی است که در گیاهان سبز برای تولید مواد غذایی بکار می‌رود که با استفاده از دی‌اکسید کربن و نور خورشید انجام می‌شود. فتوسنتز شامل دو سری واکنش وابسته به نور و غیر وابسته به نور است. واکنشهای غیر وابسته به نور یا واکنشهای تاریکی در استرومای کلروپلاست صورت می‌گیرد و طی آن انرژی شیمیایی لازم برای انجام واکنشهای مرحله نوری تامین می‌شود. این مرحله در بیشتر گیاهان در شب انجام می‌شود. در واکنشهای مرحله نوری با استفاده از دی‌اکسید کربن و نور خورشید انواع مختلف کربوهیدراتها ساخته می‌شود.

ژنوم کلروپلاست

کلروپلاست مانند میتوکندری DNA دارد و در آن همانند سازی ، رونویسی و پروتئین سازی مستقل از هسته صورت می‌گیرد. این فرایندها در بستره کلروپلاست انجام می‌گیرد. به نظر می‌رسد DNA کلروپلاستها مانند DNA میتوکندریها به غشای داخلی کلروپلاست چسبیده‌اند. اندازه ژنوم کلروپلاست در تمام گیاهان مشابه است. DNA کلروپلاستها ملکولهایی حلقوی هستند. ژنوم کلروپلاست 120 ژن دارد و محصولات شناخته شده آنها شامل RNA‌های ریبوزومی ، tRNAها ، برخی زیر واحدهای RNA پلی‌مراز ، برخی از پروتئینهای ریبوزومی و تعدادی از آنزیمهایی است که در فتوسنتز نقش دارند.

کلروپلاست‌زایی

کلروپلاست از تمایز پلاست اولیه و اتیوپلاست بوجود می‌آید. کلروپلاست مثل میتوکندری طی چرخه سلول بزرگ می‌شود و تقسیم دوتایی پیدا می‌کند. صفاتی که توسط DNA کلروپلاست تعیین می‌شوند، مانند وجود رنگدانه‌های عمل کننده در فتوسنتز در 3/2 گیاهای عالی از وراثت سیتوپلاسمی تبعیت می‌کنند و توارث اکثرا دو والدی می‌باشد. به عنوان مثال از آمیزش گیاه نر و ماده‌ای که یکی کلروپلاست سالم و دیگری کلروپلاست معیوب دارد، گیاهانی حاصل می‌شوند که برگهای آنها دارای لکه‌های سبز و سفید هستند، لکه‌های سبز مربوط به کلروپلاست سالم است، در حالی که لکه‌های سفید مربوط به کلروپلاست معیوب هستند.

 

القای پلاست اولیه توسط نور و مراحل تمایز آن به کلروپلاست بالغ

پلاست اولیه در سلولی که به تاریکی عادت دارد فقط غشای خارجی و داخلی دارد.

در اثر مجاورت با نور ، کلروفیل ، فسفو لیپیدها ، بستره کلروپلاست و پروتئینهای تیلاکوئیدی ساخته می‌شوند و وزیکولهای کوچک از غشای داخلی جوانه می‌زنند.

با بزرگ شدن پلاستها ، بعضی از وزیکولهای گرد ادغام می‌شوند و وزیکولهای پهن تیلاکوئیدی را تشکیل می‌دهند.

در مراحل آخر تمایز کلروپلاست ، بعضی از وزیکولهای تیلاکوئیدی روی هم انباشته می‌شوند و گرانا (جمع گرانوم) را بوجود می‌آورند.

تکامل پلاستها از موجودات ابتدایی

از موجودات ابتدایی یا باکتریهای فتوسنتز کننده تکامل ساختارهای پلاستی در سه جهت انجام گرفته است.

گسترش سطح نسبت به حجم که بخصوص برای کسب انرژی نورانی مناسب است.

گزینش انواع مختلفی از رنگیزه‌های پذیرنده نور ، تشکیل گیرنده‌های نوری بسیار مختلف را امکان پذیر می‌سازد.

تخصصی شدن اعمالی که منجر به تغییر ترکیب و ساختمان پلاست شده و موجب تولید انواع مختلف پلاستهای عمل کننده شده است که می‌توانند به یکدیگر تبدیل شوند.

میتوکندری

نگاه کلی

میتوکندریها در تمام سلولها دارای تنفس هوازی به جز در باکتریها که آنزیمهای تنفسی آنها در غشای سیتوپلاسمی جایگزین شده‌اند وجود دارند. این اندامکها ، نوعی دستگاه انتقال انرژی هستند که موجب می‌شوند انرژی شیمیایی موجود در مواد غذایی با عمل فسفوریلاسیون اکسیداتیو ، به صورت پیوندهای پرانرژی فسفات (ATP) ذخیره شود.

تاریخچه

اولین بررسیهای انجام شده بر روی میتوکندریها ، در سال 1894 بوسیله آلتمن صورت گرفت که آنها را بیوپلاست یا جایگاههای زنده نامید. و نظر داد که بین واکنشهای اکسایش و کاهش سلول و میتوکندری وابستگی وجود دارد. در سال (1897) بتدا با بررسیهای بیشتر آنها را میتوکندری نامید و در 1900 ، میکائیلیس به کمک معرف رنگی سبز ژانوس میتوکندری را در سلولهای زنده مشاهده کرد. واربورگ در سال 1913 آنزیمهای تنفسی را در این اندامک نشان داد. سرانجام برای اولین بار ، در سال 1934 ، بنسلی و هر ، توانستند آنها را از سلولهای کبدی جدا کرده و بعد آن بررسیهای بیشتر و عملی‌تر روی آن صورت گرفت.

شکل و اندازه میتوکندری و تغییرات آنها

شکل

شکل میتوکندریها متغیر اما اغلب رشته‌ای یا دانه‌ای می‌باشند. میتوکندریها در برخی مراحل عمل خود می‌توانند به شکلهای دیگری درآیند. مثلا ، یک میتوکندری طویل ممکن است در یک انتهای خود متورم شده و یه صورتی شبیه گرز درآید. (مثلا در سلولهای کبدی چند ساعت بعد ورود غذا) یا ممکن است میان تهی شده و شکلی شبیه راکت تنیس به خود بگیرد. گاهی میتوکندریها حفره مانند شده و دارای بخش مرکزی روشنی می‌شود. اما بعد از مدتی ، تمام این تغییرات به حالت اول برمی‌گردد.

اندازه

ابعاد میتوکندریها نیز متغیر است و در بیشتر سلولها ضخامت آنها 50µm و طول تا 7µm می‌رسد. اما متناسب با شرایط محیطی و نیز مرحله عمل سلول ، فرق خواهد کرد. در سلولهایی که هم نوع هستند یا دارای عمل مشترک می‌باشند دارای اندازه ثابت می‌باشند.


ساختمان میتوکندری

غشای خارجی

حدود 75 - 60 آنگستروم ضخامت دارد و از نوع غشاهای زیستی با ساختمان سه لایه‌ای می‌باشد. این غشا صاف و فاقد چین خوردگی است و هیچ ریبوزومی به آن نچسبیده، گاهی توسط شبکه آندوپلاسمی احاطه می‌شود اما هیچگاه پیوستگی بین این دو دیده نشده است.

اطاق خارجی

زیر غشای خارجی ، فضایی در حدود 200- 100 آنگستروم وجود دارد که به آن اطاق خارجی گفته می‌شود. که شامل دو بخش است: فضای بین دو غشا و فضای درون تاجها یا کریستاها یا کرتها. اما در برخی جاها غشای داخلی و خارجی بهم چسبیده و اندازه این فضا تقریبا صفر می‌شود. در این مناطق در مجاورت دو غشا ، تراکمی از ریبوزومهای سیتوپلاسمی دیده می‌شود. به خاطر همین در نظر گرفته شده که این مناطق ، محل عبور پروتئینهای مورد نیاز از سیتوزول به میتوکندری می‌باشند. در این اطاق ، ترکیباتی مثل آب ، نمکهای کانی و یونها ، پروتئینها ، قندها ، و چربیها SO2 ، O2 ، ATP و ADP وجود دارند. مقدار آب ، بر اندازه کریستاها و در نتیجه بر ساخت ATP تاثیر گذار است.

غشای داخلی

ضخامتش مثل غشای خارجی است اما ترکیب شیمیای آن فرق می‌کند. دارای چین‌خوردگیهای فراوانی است که به چینها ، تاج یا کریستا گفته می‌شود. این چینها برخلاف سلولهای گیاهی ، در سلولهای جانوری منظم قرار گرفته‌اند.

اطاق داخلی

فضای درونی میتوکندری که بوسیله غشای داخلی دربرگرفته شده، اطاق داخلی گویند. که از ماده زمینه‌ای با بستره دربر گرفته شده است که ترکیب و ویژگیهای کلی آن ، شبیه سیتوزول می‌باشد و دارای آنزیمهای خاص و ریبوزوم خاص خود (70S شبیه سلولهای پروکاریوتی) می‌باشد. تعداد DNA ، بر حسب نوع و سن سلول فرق می‌کند و مثل پروکاریوتها ، دارای سیتوزین و گوانین زیادی است در نتیجه در مقابل گرما مقاوم می‌باشد.

ژنوم میتوکندری

بررسیها نشان می‌دهد که DNA سازی در میتوکندری صورت می‌گیرد. طبق این بررسی به وجود DNA در میتوکندری پی می‌بریم. علاوه بر همانند سازی RNA و DNA سازی ، پروتئین سازی هم در میتوکندری صورت می‌گیرد. این فراینده توسط آنزیمها و ملکولهای خاص خود اندامک صورت می‌گیرد. DNA میتوکندری اغلب موجودات حلقوی است. جایگاه DNA در ماده زمینه میتوکندری و بعضی مواقع چسبیده به غشای داخلی میتوکندری است. ژنوم میتوکندری سلولهای اغلب جانوران از 20 - 15 هزار جفت نوکلئوتید تشکیل یافته است و ژنوم میتوکندری در پستانداران حدود 105 برابر کوچکتر از ژنوم هسته‌ای است.

محصولاتی که توسط DNA میتوکندری رمز می‌شوند شامل RNAهای ریبوزومی میتوکندری tRNA ها و برخی از پروتئینهای مسیر تنفس می‌باشد. بعضی از پروتئینهای میتوکندری نیز در هسته رمز می‌شوند و پس از ساخته شدن در سیتوزول وارد اندامک می‌شوند. مثال مفروض از صفتی که توسط ژنوم میتوکندری تعیین می‌شود، جهت پیچش صدف در حلزون است که از وراثت سیتوپلاسمی تبعیت می‌کند. در حقیقت این صفات توسط ژنوم میتوکندری که همراه میتوکندری‌های موجود در سیتوپلاسم وارد سلول تخم می‌شوند، انتقال می‌یابد و توارث به صورت تک والدی در اکثر آنها می‌باشد.

نقش زیستی میتوکندری

تنفس هوازی سلولها

تمام مواد انرژی‌زا ، ضمن تغییرات متابولیکی درون سیتوپلاسمی با واسطه ناقلین اختصاصی به بستره میتوکندری می‌رسد. گلوکز بعد از تبدیل به استیل کو آنزیم A طی گلیکولیز به میتوکندری وارد می‌شود تا در چرخه کربس استفاده شود و اسیدهای چرب بوسیله کارنی تین به داخل میتوکندری حمل شده که اینها هم سرانجام به استیل کو آنزیم A تبدیل می‌شوند. اسیدهای آمینه بعد از ورود به بستره به استیل کو آنزیم A تبدیل می‌شوند.

با انجام هر چرخه کربس که با استفاده از یک استیل کوآنزیم A در بستره میتوکندری آغاز می‌شود، علاوه بر CO2 و H2O سه مولکول نیکوتین آمید آدنین دی نوکلئوتید و یک مولکول FADH2 و یک مولکول GTP تولید می‌شود. این ناقلین انرژی در زنجیره انتقال الکترون استفاده شده و موجب تولید ATP می‌شوند.

سنتز اسیدهای چرب

یکی از راههای تولید اسید چرب ، سیستم میتوکندریایی می‌باشد که عکس اکسیداسیون یا تجزیه آنها می‌باشد.


دخالت میتوکندری در گوارش چربیها

در هنگام گرسنگی ، میتوکندریها به طرف ذرات چربی حرکت کرده و روی ذرات چرب خم شده و آنزیمهای میتوکندریایی شروع به هضم چربی و آزادسازی انرژی می‌کنند.

ذخیره و تجمع مواد در میتوکندریها

میتوکندریها می‌توانند در اطاق داخلی خود مواد مختلف را انباشته کنند که این مواد عبارتند از: ترکیبات آهن‌دار ، چربیها ، پروتئینها ، کاتیونها و آب. در اثر ذخیره این مواد ، میتوکندریها اغلب به حالت یک غشایی و شبیه باکتریهای کوچک دیده می‌شوند و به تدریج ، کریستاها محو می‌شوند اما بعد از حذف این مواد ، دوباره همه به حالت اول برمی‌گردد.

محل میتوکندریها در سلول

اغلب در اطراف هسته دیده می‌شوند اما در شرایط مرضی در حواشی سیتوپلاسم ظاهر می‌شوند. این پراکنش ، تحت تاثیر مقدار گلیکوژن و اسید چرب می‌تواند قرار بگیرد. در طول میتوز میتوکندریها در مجاورت دوک جمع می‌شوند و وقتی تقسیم پایان می‌یابد، در دو سلول دختر ، پراکنش تقریبا یکسانی پیدا می‌کند. پراکنش میتوکندریها را می‌توان بر حسب عمل آنها از نظر تامین انرژی ، مطرح کرد که میتوکندریها در داخل سلولها جابجا شده و خود را به جایی که نیاز به ATP بیشتر است می‌رسانند.


تعداد میتوکندریها در سلول

تشخیص ارزش میتوکندریایی یک سلول دشوار است. اما اغلب بر حسب نوع سلول مرحله عمل سلول متفاوت می‌باشد. در یک سلول معمولی کبد بیشترین تعداد و در حدود 1000 تا 1600 عدد وجود دارد که در اثر تحلیل رفتن سلول و نیز سرطانی شدن آن کاهش می‌یابد. و در مقابل ، تعداد میتوکندری در بافت لنفی ، خیلی کمتر است. در سلولهای گیاهی ، کمتر از جانوری می‌باشد چون بسیاری از اعمال میتوکندریها ، بوسیله کلروپلاست انجام می‌شود.

منشا میتوکندری

دو نظریه بیان شده است: یکی اینکه میتوکندریها ممکن است از قالبهای ساده‌تری ساخته شوند (تشکیل Denovo) و دیگر اینکه میتوکندریهای جدید از تقسیم میتوکندریهای قبلی بوجود می‌آیند. به این صورت که تعداد آنها ، در طول میتوز و نیز در اینترفاز افزایش یافته و بعد بین دو سلول دختر ، پراکنش می یابند.

خاستگاه پروکاریوتی میتوکندری

فرضیه‌ای در این صدد مطرح شده است که: در گذشته بسیار دو ر، جو زمین فاقد اکسیژن بوده و جاندارانی که در آن زمان می‌زیسته‌اند بیهوازی بودند. با گذشت زمان و ضمن واکنشهای شیمیایی ، جو زمین دارای اکسیژن شده و به تدریج جانداران آن زمان و بویژه پروکاریوتها به علت ساختمان ساده خود ، هوازی شده‌اند. بعدها این پروکاریوتها هوازی شده ، توسط سلولهای یوکاریوتی بلعیده شدند و از این همزیستی سلولهای یوکاریوتی هوازی ایجاد شدند. پس اجداد میتوکندری براساس این فرضیه ، باکتریها می‌باشند.

واکوئل

نگاه کلی

بررسی انواع مختلفی از بافتها نشان می‌دهد که بخشی از سیتوپلاسم بویژه در یاخته‌های گیاهی بوسیله اندامک حجیمی که آن را واکوئل می‌نامند پر شده است. مجموعه واکوئلهای هر یاخته ، دستگاه واکوئلی را تشکیل می‌دهد که آن را در مقایسه با کوندریوزومها (مجموع میتوکندریها) و پلاستیدوم (مجموع پلاستها) واکوئم می‌نامند. ممکن است واکوئلها 80 تا 90 درصد حجم یاخته‌ای را پر کنند و سیتوپلاسم را به صورت لایه نازکی در کناره‌های یاخته باقی گذارند.

اولین گزارش در مورد واکوئلها بیشتر بر روی ویژگی شفاف بودن این اندامکها تکیه داشت و نام واکوئل از کلمه لاتین واکوئوس (فضای خالی) با این دید ابداع شد که واکوئل حفره یاخته‌ای کم و بیش غیر فعال است. در سالهای اخیر ، پویایی و اهمیت تبادلهای واکوئلی به اثبات رسیده و واکوئلها به عنوان یکی از اندامکهای فعال یاخته‌ای منظور شده‌اند.

تفکیک یا جدا سازی واکوئلی

عده زیادی از پژوهشگران واکوئلها را به صورت حفره‌های آبکی که از تورم بخشهای کلوئیدی سیتوپلاسم بوجود آمده‌اند، در نظر می‌گیرند. برخی دیگر آنها را نتیجه آبکی شدن محتوای بخشهایی از شبکه آندوپلاسمی دانسته‌اند. پس از پژوهشهای دووری مشخص شد که واکوئلها تشکیلات ساده موقتی نیستند، بلکه از بخشهایی مستقل و پایدار یاخته‌ای هستند. وی با پلاسمولیز یاخته‌ها در شرایط کم و بیش نامناسب موفق به تخریب سیتوپلاسم و حفظ واکوئلها شد.

این تجربه را تفکیک یا جداسازی واکوئلی می‌نامند که موجب بدست آمدن حفره‌هایی شد که برای چند روز ویژگیهایی چون قدرت نگهداری رنگدانه‌ها و توان تغییر حجم باز گشت پذیر با تغییر شرایط محیط خارجی را حفظ می‌کردند. این ویژگیها موجب این پندار شد که شیره واکوئلی بوسیله پوششی چسبنده ، ممتد ، قابل کشش ، قابل ارتجاع ، پایدار و دارای تراوایی نسبی احاطه شده است که دووری آن را تونوپلاست نام گذاشت. تمام این نتایج پس از کاربرد میکروسکوپ الکترونی ثابت گردیدند.

تغییرات واکوئلها

واکوئلها اندامکهایی دارای قابلیت تغییر و تحول هستند. تعداد ، اندازه ، نوع و غلظت محتوای درونی آنها بر حسب درجه تمایز یاخته‌ای ، شرایط محیطی ، فصل و شرایط فیزیولوژیکی یاخته‌ها تغییر می‌کند. با افزایش میزان تمایز یاخته‌های گیاهی ، واکوئلهای کوچک به تدریج بهم پیوسته و گسترش می‌یابند و واکوئل حجیمی را می‌سازند که بخش عمده یاخته را پر می‌کند و هسته و سیتوپلاسم را به کناره‌های یاخته می‌راند.

 

هنگام تمایز زدایی ، واکوئل حجیم چند بخش می‌شود. حجم این واکوئلها کاهش می‌یابد و موجب بازگشت سیتوپلاسم و هسته به وضعی مشابه یاخته جوان می‌گردد. واکوئلها اندامکهایی دارای تغییرات منظم نیز هستند. در یاخته‌های محافظ روزنه ، تغییرات واکوئلها دارای نظم شبانه روزی است. هنگام روز به دنبال افزایش فشار اسمزی که موجب تغییر شکل و حجیم شدن یاخته‌ها می‌شود، روزنه‌ها گشاد می‌شوند و شب هنگام که فشارها و اندازه واکوئل‌ها کاهش می‌یابد، روزنه‌ها تنگ می‌شوند.

جنبشهای شبانه و حالت خواب اندامهای گیاهی (بسته شدن گلها ، تا شدن برگها هنگام شب ، باز شدن صبحگاهی آنها و نظایر آن) نیز نتیجه تغییرات فشار اسمزی یاخته‌هایی است که در محلهای حساس قرار دارند. در یاخته‌های کامبیومی ، واکوئلها دارای نظم سالانه هستند. در زمستان کوچک شده و در بهار دوباره حجیم می‌گردند.

ساختار و فرا ساختار واکوئلها

ساختار واکوئل دو بخش اصلی شامل غشا و محتوای واکوئلی قابل تشخیص است. بررسی‌های انجام شده با میکروسکوپهای الکترونی فرا ساختار غشای واکوئلی یا تونوپلاست را بطور کلی مشابه پلاسمالم و متشکل از دو لایه فسفولیپیدی و پروتئینها نشان داده است. با این تفاوت که بخشهای گلوسیدی (قندی) گلیکولیپیدها در غشای واکوئل به طرف درون واکوئل قرار دارند و بخشی از این ساختارها به عنوان گیرنده برخی مواد موجود در واکوئلها عمل می‌کنند.

محتوای واکوئلی

دستگاه واکوئلی دارای ترکیبات بسیار زیاد است که شامل یونهای کانی ، قندهای ساده و اولیگوزیدها ، اسیدهای آمینه ، اسیدهای آلی و دیگر (مثل اسد مالیک در ریشه واکوئلی سیب ، اسید اسکوربیک در مرکبات) پلی پپتیدها و پروتئینها و گلیکو پروتئینها ، موسیلاژهای پلی ساکاریدی و هتروزیدهای متنوع است. در مورد یونهای کانی ، تمام فنون جدید ، ورود انتخابی آنها را تایید می‌کنند. مخمرها تجمع واکوئلی قابل ملاحظه‌ای از Mg+2 و فسفات دارند. برعکس سیتوپلاسم آنها دارای یونهای +K و +Na است.

لوله‌های شیرابه‌ای نیز مقدار زیادی Mg+2 دارند. در حالی که +K به غلظت برابر در واکوئل و سیتوزول آنها وجود دارد. آنیونهای واکوئلی مثل -Cl ، اغلب یونهای یک ظرفیتی هستند. محتوای واکوئلی مخزنی از ترکیبات پیچیده است که جنس و غلظت آنها بر حسب گونه ، نوع یاخته‌ای و حالت فیزیولوژیکی جاندار بسیار متغیر است. برخی مولکولها بطور پایدار در واکوئلها ثابت شده‌اند و برخی دیگر با سیتوپلاسم جابجایی دارند.

این جنبشها اغلب دارای نظم هستند و در شرایط طبیعی می‌توانند نوسانهای روزانه یا سالانه داشته باشند. مدت ذخیره مواد در واکوئلها بر حسب نوع یاخته متفاوت است و در بافتهای ذخیره‌ای طولانی است. برخی مولکولها مانند آنتوسیانها ، رنگدانه‌های مختلف ، اینولین و غیره تنها در شیره واکوئلی وجود دارند و برخی دیگر مثل ساکارز ، مالات ، اسیدهای آمینه هم در واکوئل و هم در سیتوزول یافت می‌شوند. بنابراین درجه انتخاب واکوئل متغیر است.

محتوای واکوئلها ممکن است از مواد حد واسط فعالیتهای پایه متابولیسم اولیه یاخته باشند که ضمن جنبشهای سیتوپلاسمی کنار گذاشته شده‌اند و یا محصولی از مسیرهای بیوسنتزی بسیار ویژه (متابولیسم ثانویه) هستند. از مهمترین محصولات متابولیسم اولیه موجود در واکوئلها می‌توان به اسیدهای کربوکسیلیک ، گلوسیدها ، اسیدهای آمینه و پروتئینها اشاره کرد. محصولات متابولیسم ثانویه که در شیره واکوئلی وجود دارند شامل کومارین ، سیانوژنها ، فلاونوئیها ، تانن‌ها ، آلکالوئیدها و از جمله آلکالوئیدها مرفین ، تئین چای ، کافئین قهوه ، کدئین خشخاش اشاره کرد.

دستگاه گلژی

اطلاعات اولیه

با مطالعه سلولها توسط میکروسکوپهای نوری و الکترونی به این نتیجه رسیده‌اند که دستگاه گلژی هم در یاخته‌های جانوری و هم در یاخته‌های گیاهی وجود دارد و یکی از اجزای مهم ساختمانی یاخته‌هاست که بویژه در اعمال ترشحی سلولها فعالیت زیادی دارد. این دستگاه می‌تواند به صورت شبکه‌ای در مجاورت هسته ، یا به صورت بخشهای هلالی شکل و مجزا از یکدیگر به نام دیکتیوزومها در برشهای یاخته‌ها دیده شوند. دیکتیوزومها در گیاهان پیشرفته ، جلبکها و نیز در خزه‌ها مشاهده شده‌اند. در قارچها ، دیکتیوزومها کمیاب هستند و در پروکاریوتها تاکنون دیکتیوزومی شناخته نشده است.


ساختمان دستگاه گلژی

واحد ساختمانی یا بخش اصلی تشکیل دهنده دستگاه گلژی دیکتیوزوم است و شکلهای دیگر آن می‌توانند از اجتماع تعدادی دیکتیوزوم تشکیل شوند. هر دیکتیوزوم بطور معمول از اجتماع 3 تا 8 ساختمان کیسه‌ای که هر کدام را یک ساکول ، سیسترون با سیسترنا نیز می‌نامند تشکیل شده است.

ساکول یا سیسترن یا سیسترنا

کیسه‌های پهن و قرصی شکل غشایی هستند که بخش میانی صاف و وسعتی حدود یک میکرومتر دارند. اما کناره‌های کیسه بسیار چین خورده و متراکم است که قدرت جوانه زدن دارند و وزیکولهای کوچکی را ایجاد می‌کنند. هر ساکول حالت کمانی دارد و یک سطح آن برآمده و سطح دیگر فرو رفته است. ضخامت غشای ساکول همانند غشای شبکه آندوپلاسمی است. سطح سیسترن یا ساکول صاف و بدون ریبوزوم است. بین ساکولهای یک دیکتیوزوم سیتوزول وجود دارد و توسط پروتئینهای رشته‌ای و لوله‌ای بهم متصل شده‌اند. همه زیر لوله‌های پروتئینی که در سیتوزول بین دو کیسه یا ساکول قرار دارند همسو هستند.

دیکتیوزوم

هر دیکتیوزوم دستگاه گلژی دارای سه سطح یا سه ناحیه است.

ناحیه یا قطب محدب: این قطب به نامهای مختلف از جمله سطح نزدیک ، سطح تشکیل ، سطح کروموفیل ، سطح اسموفیل و سطح سیس (Cis) نامیده می‌شود. این بخش نزدیک به شبکه آندوپلاسمی و گاهی پوشش هسته‌ای قرار دارد و از راه حفره‌های گذر یا وزیکولهای انتقالی با شبکه آندوپلاسمی ارتباط دارد و مواد از ناحیه Transition شبکه آندوپلاسمی به دستگاه گلژی می‌رسد. این سطح کروموفیل یا رنگ دوست است.

ساکولهای جدید از این سطح بر روی ساکولهای قدیم قرار می‌گیرند و به همین جهت سطح تشکیل نیز نامیده می‌شوند. غشاهای سیترناهای جدید نازکتر از قدیمیها هستند. وزیکولهای کوچکی به نام وزیکولهای انتقالی یا حفره‌های گذر به عنوان ساختارهای انتقالی برای حمل مواد از شبکه آندوپلاسمی دانه‌دار به گلژی در منطقه سیس وارد عمل می‌شود. گاهی برخی وزیکولها از بخش سیس گلژی به شبکه آندوپلاسمی برگردانده می‌شوند.

ناحیه میانی: چند کیسه یا ساکول دارد که بطور منظم روی هم قرار گرفته‌اند. تعداد این کیسه‌ها به نوع سلول بستگی دارد و اغلب نزدیک به 5 است.

ناحیه یا قطب مقعر: به نامهای سطح ترشح ، سطح گود یا کاو ، سطح بلوغ ، منطقه ترانس ، سطح کروموفوب یا رنگ گریز نیز خوانده می‌شود. این سطح دور از شبکه آندوپلاسمی و در مجاورت کیسه‌های ترشحی و گرانولهای ذخیره‌ای قرار دارد و مواد از این طریق از گلژی خارج می‌شوند و با واسطه حفره گلژی به سوی بخشهای دیگر از جمله غشای سیتوپلاسمی می‌روند. در این سطح ساکولها یا سیسترناهای قدیمی به صورت حفره یا وزیکول در می‌آیند که مواد ترشحی در آنها وجود دارد.

تفاوت دستگاه گلژی در سلولهای گیاهی و جانوری

در تفسیر دستگاه گلژی هنوز اختلاف نظر وجود دارد.برخی پژوهشگران مجموعه 5 - 4 دیکتیوزوم را که مجاور هم قرار گرفته و بوسیله لوله‌های بسیار باریکی بهم متصل شده‌اند دستگاه گلژی نامیده‌اند. برخی دیگر معتقدند که همه دیکتیوزومهای یاخته می‌تواند در ارتباط و پیوستگی باشند و مجموع آنها را دستگاه گلژی می‌نامند. در یاخته‌های جانوری دیکتیوزومها اغلب بهم پیوسته‌اند و شبکه‌ای واقعی را تشکیل می‌دهند که همان دستگاه گلژی است. در یاخته‌های گیاهی دیکتیوزومها اغلب جدا از هم هستند و به همین دلیل مشاهده میکروسکوپی آنها نیز دشوارتر است.

ترکیب شیمیایی دستگاه گلژی

اساس ترکیب شیمیایی دستگاه گلژی فسفو لیپو پروتئینی است. این دستگاه حاوی پلی سارکاریدها ، مواد قندی مثل گلوکز آمین ، گالاکتوز ، گلوکز ، مانوز و فوکوز هستند. آنزیمهایی در بخشهای مختلف دیکتیوزوم وجود دارد. نظیر ویتامین پیروفسفاتاز ، فسفاتازهای اسیدی ، نوکلئوتید آدنین دی‌نوکلئوتید فسفاتاز ، گلوکز 6 - فسفاتاز و NADH - سیتوکروم رداکتاز که دو تای آخر از آنزیمهای شاخص شبکه آندوپلاسمی می‌باشند.

حضور آنها در دستگاه گلژی که در قسمت لبه‌های متورم کیسه قرار دارند نشانه ارتباط شبکه آندوپلاسمی و دیکتیوزوم است. یکی از عمده‌ترین و شاخص‌ترین گروه آنزیمی بخش گلژی گلیکوزیل ترانسفرازها هستند که با انتقال قندها به پروتئینها و به لیپیدها موجب تشکیل گلیکو پروتئین و گلیکو لیپید می‌شوند. ضمنا آب ، مواد معدنی و گلیکو پروتئین از دیگر ترکیبات شیمیایی گلژی هستند.

منشا دستگاه گلژی

مسئله خاستگاه دیکتیوزومها هنوز مورد بحث است و در این زمینه فرضیه‌ها و نظریه‌های چندی ارائه شده است. بدیهی است که هر یاخته در شرایط عادی بطور معمول تعدادی از دیکتیوزومهای خود را از یاخته والدی به ارث برده است. سه نظریه مهم از این قرارند:

ایجاد وزیکولها و یا حفره‌هایی از شبکه آندوپلاسمی صاف و یا گاهی از پوشش هسته‌ای که بر سطح نزدیک یا سطح تشکیل دیکتیوزوم افزوده می‌شود. البته این پدیده امروز مورد بحث است و تائید عمومی ندارد زیرا حفره‌های گذر یا انتقالی جدا شده از شبکه آندوپلاسمی بیشتر جذب کناره‌های کیسه‌های دیکتیوزومی می‌شوند و عاملی برای پایداری و امکان جوانه زنی کیسه‌ها را فراهم می‌کند.

تشکیل از نو با زیر بنای به هم پیوستن قطعاتی از شبکه آندوپلاسمی دستگاه گلژی را بوجود می‌آورد.

دیکتیوزومهای جدید از تقسیم دیکتیوزومهای پیشین بوجود می‌آید.

اعمال دستگاه گلژی

این دستگاه اعمال زیاد و مهمی را انجام می‌دهد و از آن به پلیس راه سلول یاد می‌کنند. اعمال آن را تیتروار بیان می‌کنیم :

پردازش و آماده سازی محصولات تازه سنتز شده سلولی.

گلیکوزیلاسیون پروتئینهای ترشحی: این فرایند در شبکه آندوپلاسمی دانه‌دار آغاز می‌شود اما طویل شدن و پردازش زنجیره پلی‌ساکارید در گلژی انجام می‌گیرد.

سولفاتاسیون: افزودن گروه‌های سولفات به پروتئینها در سطح دور یا ترانس انجام می‌گیرد.

افزودن گروه‌های فسفات به پروتئینها.

راهنمایی پروتئینها به سوی هدف نهایی.

دخالت در سازماندهی برخی از اندامکهای سلولی از جمله لیزوزومها.

دخالت در تشکیل ، گسترش و رشد غشای سلولی.

دخالت در ترشحات نورونی یا تشکیل کیسه‌های سیناسپی محتوی نوروترانسیمتر

ترشح موسیلاژها و مواد ژله‌ای با زیر بنای پلی ساکاریدهای اسیدی بویژه در سلولهای گیاهی.

دخالت در تولید و ترشح پولک و پوشش سیلیسی سطح جلبکها.

دخالت در اگزوسیتوز سلول.

ایجاد تغییرات شیمیایی در مولکولها.

هسته

اجزای اصلی هسته

ذرات اساسی که کلیه هسته‌ها از آنها ترکیب شده است، عبارتند از:

پروتون‌ها

نوترون‌ها


خواص اساسی هسته

این خواص بر دونوع است که عبارتند از :

خواص مستقل از زمان : خواصی هستند که وابسته به زمان نیستند. مانند جرم ، اندازه ، بار

خواص وابسته به زمان : خواصی هستند که وابستگی به زمان دارند. مانند واپاشی پرتوزا و واکنشهای هسته‌ای

جرم و بار هسته

جرم هسته را می‌توان با این فرمول زیر پیدا کرد : M=Z×Mh + N×Mn که در آن ، M جرم هسته ، Mh جرم یک اتم هیدروژن یا جرم پروتون و Mn جرم نوترون می‌باشند.

 شعاع هسته

آزمایش‌های دقیق‌تر با بهره‌گیری از پراگندگی ذرات هسته‌ای دیگر و الکترون‌ها نشان داده‌اند. شعاعی که در آن ، آثار هسته‌ای ظاهر می‌شود، از رابطه زیر بدست می‌آید:

R=R0 A1/3

که در آن ، R0 ثابت شعاع دارای این مقادیر است:R0=1.2 F , 1.4 F که در آن F نماد فرمی ، واحد طول هسته‌ای است و A جرم اتمی می‌باشند.


خواص دینامیکی هسته

هسته‌ها مانند اتم‌ها می‌توانند در حالت برانگیخته با انرژی‌های معین باشند. گذارهای بین حالت‌های برانگیخته با گسیل تابش الکترو مغناطیسی صورت می گیرد (اشعه گاما).

هسته‌ها همچنین می‌توانند به یگدیگر تبدیل شوند. بعضی از تبدیل‌ها خود به‌ خود با گسیل الکترون‌های مثبت یا منفی (ذره بتا) یا گسیل ذره آلفا صورت می‌گیرد.

تبدیل‌های متنوعی را می‌توان توسط بمباران هسته‌ای القاء کرد.

قانون بقای ذرات: تعداد نوکلئون‌ها تحت هر شرایطی و هر تبدیلی پایسته است(مجموعشان ثابت است).

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: پنجشنبه 14 اسفند 1393 ساعت: 16:05 منتشر شده است
برچسب ها : ,,,
نظرات(0)

تحقیق درباره ساختار سلول گیاهی

بازديد: 365

 

ساختار سلول گیاهی

گیاهان از واحدهای زنده و فعالی به نام یاخته تشکیل شده‌اند که معمولا در درون دیواره یاخته‌ای جای دارند. هر یاخته ، از دیواره یاخته‌ای و غشای سیتوپلاسمی و سیتوپلاسم و هسته تشکیل شده است. وجود دیواره یاخته‌ای در گیاهان آنها را از جانوران متمایز می‌سازد. جنس این دیواره از سلولز است. هر دو یاخته مجاور را یک تیغه میانی از جنس پکتین از هم جدا می‌کند.

مقدمه

سلول واحد ساختاری مشترک در تمام موجودات زنده است. سلول عنصری مستقل ، کوچک و دارای اندازه میکروسکوپی است. محتویات سلولی مجموعه‌ای از اجزا با ساختاری بسیار پیچیده و ترکیبات خاص است. تمام ظواهر و پدیده‌های حیاتی و واکنشهای موجود ، ناشی از فعالیت محتویات پروتوپلاست درون سلولی است. سلولهای گیاهی نسبت به سلولهای جانوری دارای اشکال متنوعتری هستند. سلول‌های گیاهی دارای اشکال چند ضلعی با اقطار مساوی و منظم و یا کشیده هستند و علاوه بر آن سلولهای گیاهی ، محصور در غشای شکل دهنده نسبتا سخت و محکم و مقاوم هستند که گاه نازک و گاهی ضخیم است.

در یک توده سلولی همگن سازنده یک بافت ، همه سلولها دارای یک اندازه و یک شکل و معمولا چند وجهی‌اند. در گیاهان آلی اندازه سلولها متناسب با کار آنهاست و بر حسب ماهیت بافت و نقشی که در گیاه دارند اندازه آنها متفاوت است. اندازه و طول سلولهای سازنده پیکر گیاهان به ماهیت و ویژگی آن سلول بستگی دارد و به طول ملکولهای پروتئینی موجود در آنها و همچنین به میزان فعالیت هسته سلول و دوره استراحت آن ارتباط دارد.

سیتوپلاسم هر دو یاخته مجاور به وسیله منافذ موجود (پلاسمودسم‌ها) با هم ارتباط دارند. غشای سیتوپلاسمی از یک لایه دو مولکولی فسفولیپید تشکیل یافته است که پروتئینها به دو صورت سطحی و عمقی در آن غوطه‌ورند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. زمینه سیتوپلاسم اساسی‌ترین قسمت درونی یاخته را تشکیل می‌دهد، زیرا اکثرا اعمال بیوسنتزی یاخته در آن صورت می‌گیرد. اندامکها در این زمینه قرار دارند. یکی از ویژگیهای سیتوپلاسم جنبش دائمی آن است که در اثر انقباض ریزرشته‌ها بوجود می‌آید، ولی ریزلوله‌ها به این جریان جهت می‌دهند.

روش مشاهده سلول گیاهی

ساده‌ترین راه مشاهده سلول گیاهی ، مطالعه سلولهای اپیدرم فلس پیاز است. اپیدرم فلس پیاز در زیر میکروسکوپ با بزرگنمایی ضعیف به صورت سلولهای چند وجهی کشیده‌ای است که بطور منظم که هم قرار داشته و بهم چسبیده‌اند. چنانچه این اپیدرم را با محلول رقیق یدیدوره آغشته سازیم هسته سلولها بطور محسوسی مشخص می‌گردد. در هسته یک یا دو هستک به صورت نقاط روشن دیده می‌شود. علاوه بر هسته در داخل سلولها واکوئل یا (حفره‌های سیتوپلاسمی) نیز وجود دارد که در ابتدا کوچک و پراکنده هستند و با رشد سلول بهم ملحق شده ، حفره‌هایی واحد و بزرگ را تشکیل می‌دهند.

 

در سلولهای پیر و مسن که واکوئلها قسمت اعظم فضای درونی آنها را فرا می‌گیرند هسته به گوشه‌ای رانده شده ، سایر محتویات سلول به صورت ورقه نازک در اطراف واکوئل مرکزی چسبیده به غشا باقی می‌مانند. به علت چسبندگی و یکی بودن غشای سیتوپلاسمی با غشای سلولزی لذا غشای سیتوپلاسمی بطور عادی قابل مشاهده نیست ولی با اضافه کردن چند قطره محلول آب و نمک 20 درصد و ایجاد کیفیت پلاسمولیز غشای سلولی از غشای سلولزی جدا و قابل رویت می‌گردد.

دیواره یاخته‌ای

در پیرامون اغلب یاخته‌های گیاهی و بعضی از یاخته‌های جانوری ، دیواره‌ای به نام دیواره یاخته‌ای وجود دارد. دیواره یاخته‌ای در یاخته‌های گیاهان ساختار نسبتا سخت سلولزی دارد و نوعی اسکلت بیرونی را ایجاد می‌کند که به این یاخته‌ها شکل هندسی و نسبتا ثابتی می‌دهد. این دیواره که دیواره نخستین نامیده می‌شود، بوسیله پروتوپلاسم زنده یاخته ایجاد می‌شود و وجود آن اساسی‌ترین وجه تمایز بین گیاهان و جانوران است. دیواره بین دو یاخته شامل شامل سه بخش است: هر یک از دو یاخته مجاور هم ، دیواره نخستین را تولید می‌کند و بین آن دو ، لایه بین یاخته‌ای به نام تیغه میانی مشترک بین دو یاخته وجود دارد.

جنس تیغه میانی از ترکیبات پکتینی ، مانند پکتین ، است. در نتیجه افزایش سن یاخته ، ممکن است مواد دیگری ساخته شوند و از سمت داخل یاخته به صورت لایه‌ای روی دیواره نخستین قرار بگیرند که دیواره دومین یا پسین نام دارد. ارتباط بین دو یاخته از راه پلاسمودسمها صورت می‌گیرد. پلاسمودسمها در دیواره‌های نخستین در سوراخهای ریز دیواره ، جایی که دیواره فاقد تیغه میانی است، بوجود می‌آیند و سیتوپلاسم از آن محلها از یاخته‌ای به یاخته دیگر جریان می‌یابد.

غشای سلولی

غشای سیتوپلاسمی از یک لایه دو مولکولی (دو ردیفی) فسفولیپید ساخته شده که هر مولکول آن شامل یک سر آب دوست و یک دم آب گریز است. استقرار این دو ردیف مولکول در مقابل یکدیگر طوری است که دمهای آب گریز به طرف داخل و در مقابل یکدیگر و سرهای آب دوست به طرف خارج قرار گرفته‌اند. مولکولهای پروتئین در سطح بیرونی یا درونی و یا در تمام غشا وجود دارند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. این غشا چون سدی نیمه تروا عمل می‌کند، نیمه تراوا بودن غشا عامل اصلی در نقش آن است.


سیتوپلاسم

سیتوپلاسم شامل تشکیلات یاخته‌ای است که ساختاری نیمه شفاف ، بی‌شکل و تقریبا یکنواخت دارد و خاصیت شکست نور در آن کمی بیش از آب است. سیتوپلاسم پس از مرگ یاخته با رنگهای اسیدی آنیلین رنگ می‌گیرد، یعنی اسیدوفیل است. برعکس ، سیتوپلاسم زنده تقریبا خنثی است. زمینه سیتوپلاسم را هیالوپلاسم گویند. در هیالوپلاسم دو دسته عناصر به حالت شناور وجود دارند: یک دسته ضمایم دائمی مانند میتوکندریها ، پلاستها ، دستگاه گلژی و غیره که اندامک نامیده می‌شوند و دسته دیگر مواد غیر دائمی حاصل از اعمال زیست شیمیایی داخل هیالوپلاسم به نام اجسام ضمیمه هستند.

در هر حال محدوده هیالوپلاسم از طرف داخل ، غشای هسته و از طرف خارج ، غشای سیتوپلاسمی یاخته است. اندامکها عبارتند از: هسته ، میتوکندری ، شبکه آندوپلاسمی ، دستگاه گلژی ، ریزلوله‌ها و ریزرشته‌ها ، لیزوزوم‌ها ، واکوئلها و پلاستها. ذرات دیگری نیز در سیتوپلاسم دیده می‌شوند که از اندامکها کوچکترند و غشا ندارند و ریبوزوم نام دارند. اگر چه ریبوزومها غشا ندارد و اندامک به شمار نمی‌آیند، اما اهمیت زیادی در سوخت و ساز یاخته دارند. سیتوپلاسم در تبادلات یاخته ، مراحل مختلف سوخت و ساز و همچنین جنبشهای سیتوپلاسمی که ممکن است چرخشی و یا موضعی باشد، نقش دارد.

ریبوزومها

ریبوزومها ذرات کروی کوچکی هستند که به صورت آزاد یا روی شبکه‌ آندوپلاسمی درون سیتوپلاسم دیده می‌شوند. با استفاده از رادیوایزوتوپها توانسته‌اند محل تشکیل اجزای ریبوزوم را تعیین کنند. بدین سان معلوم شده که RNA ریبوزومی در هستک ساخته می‌شود و از آنجا به سیتوپلاسم منتقل می‌گردد. دو بخش ریبوزوم پس از ساخته شدن به یکدیگر می‌پیوندند و ریبوزوم کامل را بوجود می‌آورند. نقش اصلی ریبوزوم‌ها شرکت در ساختن پروتئین‌ها است، یعنی جایگاه ساخت پروتئین هستند.

شبکه آندوپلاسمی

شبکه آندوپلاسمی متشکل از لوله‌های تو خالی است. در برش به صورت مجاری ظریف غشایی توخالی ، با شاخه‌های فراوان و مرتبط با یکدیگر و یا به شکل مخازن پهن و بیش متراکم و پراکنده در تمام سیتوپلاسم مشاهده می‌شود. به بسیاری از نقاط دیواره بیرونی شبکه آندوپلاسمی ، تعداد فراوانی دانه‌های ریبوزوم متصل‌اند و به همین دلیل به دو صورت دانه‌دار و بدون دانه یافت می‌شوند: شبکه آندوپلاسمی دانه‌دار یا ناصاف که واجد ریبوزوم بوده و شبکه آندوپلاسمی بدون دانه یا صاف که فاقد ریبوزوم است. نقش شبکه آندوپلاسمی ، ذخیره و هدایت بعضی مواد درون یاخته و شرکت در تشکیل دیواره سلولزی یاخته و ایجاد ارتباط بین یاخته‌ها است.


دستگاه گلژی

دستگاه گلژی از واحهایی به نام تشکیل شده است. دیکتیوزومها سیستمهای غشایی ویژه‌ای هستند که از روی هم قرار گرفتن 5 تا 15 کیسه گرد و تخت با وزیکولهایی در لبه آنها تشکیل شده‌اند. هر کیسه را سیسترنا می‌نامند. دیکتیوزوم‌ها در بسته بندی پروتئین نقش دارند.

میکروبادیها

میکروبادیها وزیکولهایی هستند که از دیکتیوزومها جدا می‌شوند و خود اندامکهای ویژه‌ای را پدید می‌آورند. اینها ذرات کروی کوچکی هستند که در پیرامون آنها فقط یک غشا وجود دارد. میکروبادیها شامل پراکسی زوم و گلی اکسی زوم هستند.

لیزوزوم‌ها

لیزوزومها نیز از دیکتیوزوم‌ها جدا شده و خود اندامکهای ویژه‌ای را پدید می‌آورند و اندامکهایی به اندازه میتوکندریها و یا کوچکتر از آنها هستند که حاوی آنزیم‌های گوناگون می‌باشند و نقش آنها تجزیه سریع مولکولهای درشت و گوارش مواد هنگام تمایز یاخته‌ای است.


واکوئلها

بخش اعظم فضای یاخته‌های بالغ را واکوئل اشغال می‌کند که به صورت حفره یا کیسه‌ای است که غشایی به نام تونوپلاست آن را از سیتوپلاسم جدا می‌کند. درون واکوئل را مایعی به نام شیره واکوئلی پر کرده است. واکوئلها محل ذخیره آب و مواد آلی و کانی و همچنین تجمع مواد زاید سیتوپلاسم هستند.

میتوکندری

میتوکندریها ذرات ریزی هستند که به شکل کروی ، یا میله‌ای و یا رشته‌ای دیده می‌شوند و دارای دو غشا هستند: غشای بیرونی آنها صاف و غشای درونی به صورت چین خورده است. نقش میتوکندری ، تنفس است و ضمنا میتوکندری ، منبع انرژی می‌باشد. آنزیمهای تنفسی موجود در سطح غشای درونی آنها موجب شکستن مولکولهای گلوکز و اسیدهای آمینه و چربیها می‌شود و در نتیجه انرژی آزاد می‌گردد.

پلاستها

پلاستها را بر اساس رنگدانه‌هایی که ذخیره می‌کنند، به سه گروه کلروپلاست ، کروموپلاست و لوکوپلاست تقسیم می‌کنند. کلروپلاستها عموما قرصی شکل بوده و به علت دارا بودن کلروفیل ، سبز رنگ هستند. این اندامک غشایی دو لایه‌ای دارد. بخش درونی کلروپلاست شامل دو سیستم لایه‌ای و ماده دربرگیرنده این دو سیستم یعنی ماده زمینه‌ای یا دانه‌دار است. سیستم لایه‌ای دو بخش دارد: بخشی که گرانومها را تشکیل می‌دهد و بخش دیگری که آنها را بهم متصل می‌کند.

بخش درونی گرانوم به صورت کیسه‌های پهن شده‌ای مرتب شده‌اند و تیلاکوئید نام دارند و محل کلروفیلها هستند. نقش کلروپلاستها فتوسنتز است. لوکوپلاستها پلاستهای بی‌رنگی هستند که در یاخته‌های بشره و دیگر بافتهای بی‌رنگ وجود دارند. بعضی نشاسته ذخیره کرده و آمیلوپلاست نام دارند. گروه سوم پلاستها ، رنگدانه‌های زرد یا قرمزی داشته و کروموپلاست نامیده می‌شوند.

هسته

هسته از غشا و شیره هسته و دانه‌های کروماتین و یک یا دو هستک تشکیل شده است. DNA و RNA در هسته و میتوکندری و پلاست وجود دارند. هسته بزرگترین اندامک ساختار درونی یاخته‌های یوکاریوت است. اندازه نسبی هسته بر حسب سن و نوع یاخته فرق می‌کند.

تفاوت یاخته‌های گیاهی و جانوری

برای تمایز یاخته‌های گیاهی و جانوری می‌توان تفاوتهای زیر را بررسی کرد:

تفاوتهای متابولیسمی

تفاوتهای ساختاری

تفاوتهای تقسیمی


منابع :

1-     سایت اطلاع رسانی دانشنامه رشد :

www.daneshnameh.roshd.ir

2-     سایت اطلاع رسانی تبیان :

www.tebyan.net

3-     سایت اطلاع رسانی آفتاب :

www.aftab.ir

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: پنجشنبه 14 اسفند 1393 ساعت: 16:03 منتشر شده است
برچسب ها : ,,,
نظرات(0)

ليست صفحات

تعداد صفحات : 792

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس