تحقیق و پروژه رایگان - 212

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

پيچيدگي محاسبات و معماري سيستم‌هاي نانويي

بازديد: 85

پيچيدگي محاسبات و معماري سيستم‌هاي نانويي




 


 

سيستم‌هاي محاسباتي مبتني بر فناوري نانو، نيازمند ابزارهاي دقيقي جهت ارزيابي defects و Fault-tolerant” به منظور بهبود بخشيدن به اعتبارشان در راستاي محاسبة فاكتورهاي مؤثر مي‌باشند. به عنوان مثال خودآرائي شيميايي ابزارهاي مولكولي فقط داراي حدهاي آماري مي‌باشند كه متضمن كاركرد تمام عيار ابزارهاي وابسته به آن نمي‌باشند.

 پژوهشگران مسأله قابليت اعتبار در محاسبات نانوئي را از زواياي گوناگون مورد بررسي قرار داده‌اند:

"افزونگي N پيمانه‌اي"، "تسهيم NAND"، "تجديد آرايش" "رمزنگاري كنترل خطا"، "‌شبكه‌هاي عصبي هوشمند" و ساير معماري‌هاي نوين محاسباتي.

همة اين روش‌هاي محاسباتي در كنترل خطا در حوزة معيني از ارزيابي خطا معتبرند. اما برا ي آن كه به قابليت اعتمادي بالاتر از %95 دسترسي پيدا كنيم نيازمند حل مسأله محاسبات در كلية سطوح: سطح ابزارها، سطح معماري سيستم و سطح كاربرد، مي‌باشيم.

به عنوان مثال در سطح ابزارها، پارامترهاي طراحي ابزارها مي‌بايستي لحاظ گردد تا قابليت اعتماد ابزار در« عملكردها» ودر« دورة زندگي» كافي، افزايش يابد.

در سال 1956، "جان فون نيومن" در كتاب مشهورش

Probabilistic Logics and the Synthesis of Reliable organisms from unreliable Components"

دربارة قابليت اعتماد به سيستم‌هاي محاسباتي مبتني بر مؤلفه‌هاي مستعد خطا، صحبت كرد. از آن تاريخ به بعد، اين ديدگاه در سيستم‌هاي محاسباتي اهميت يافت.

 دريچه هاي عمل كننده به عنوان ابزارهاي switching،‌ در اين دورة به عنوان عملگرهاي تكرار،‌ مورد استفاده واقع شدند. با ظهور ترانزيستورهاي سيليكوني و با افزايش و بهبودكارآئي صنعت نيم‌رساناها، اين امر اهميت كمتري پيدا كرد. البته محاسبه و ارزيابي خطا در سيستم‌هاي محاسباتي،به ويژه‌ براي مأموريت «سيستم‌هاي بحراني» همواره يك زمينة عمدة تحقيقاتي بوده است.

به هر حال ايده طراحي سيستم‌هاي با احتمال خطاي صفر، مطرح شده بود، كه، اخيراً پژوهشگران ايده استفاده از نانوتكنولوژي به عنوان المان‌هاي switching را مطرح كردند.

در صنايع حال حاضر نيم‌رساناها، بلافاصله بعد از ظهور ويفرهاي سليكوني، آزمايش‌ها آغاز شد و بخش‌هاي معيوب، مردود شد.بازدهي ساخت به وسيلة درصد بخش‌هاي بدون عيب اندازه‌گيري مي‌شود.

متأسفانه،‌ با ابزارهاي پايه سليكوني كه تا حد چندين نانومتر يا حتي با فناوري‌هاي نوتر (نظير لايه‌هاي مولكولي خودآرا، سلول‌هاي پايه نقطه كوانتومي يا سوئيچ‌هاي مبتني بر نانوتيوب) ساخته مي‌شوند احتمال خطا كاملاً بالا مي‌رود.

از اين رو حل مسألة خطا در ابزارهاي محاسباتي مبتني بر فناوري نانو، به عنوان يك اولويت قابل ملاحظه در طراحي مطرح است زيرا بازده ساخت سازه‌هاي نانوئي بر مبناي شاخص اعتبار، سنجيده مي‌شود.

مدل‌هاي محاسباتي غير كلاسيك و معماري آنها:

در ماوراء كاربرد فرم‌هاي اغلب كلاسيك، براي اندازه‌گيري تلرانس خطا، پژوهشگران جسوري در جستجوي ساخت راههائي براي اندازه‌گيري قابل اعتماد بودن سيستم‌هاي محاسباتي هستند. در اين قسمت به بررسي مدل‌هاي الهام گرفته شده از بيولوژي تا روش‌هاي جديد اندازه‌گيري تابع احتمال مي‌پردازيم:

شبكه‌هاي عصبي:

در طي 20 سال گذشته، شبكه‌هاي هوش مصنوعي ملهم از سيستم‌هاي بيولوژيك عموميت يافته است و روش‌هاي اثبات شده‌اي در راستاي حل مسائل پيچيدة غير خطي در گسترة وسيعي از علوم و مهندسي شده‌اند.

شبكه‌هاي عصبي هوش مصنوعي مبتني بر خواص بيولوژيك"نرون‌‌"ها و"سيناپس"‌ها استوار است،به گونه‌اي كه بر هم‌كنش محل اتصال دو عصب متناسب با وزن هر محل اتصال در مجموعه‌اي از يك شبكة توزيع يافتة محاسباتي است.

Rouw"" و"Hoekstra" دو چالش اصلي در ساخت شبكة عصبي نانوالكترونيك را معرفي كردند.

شبكة عصبي،به صورت نوعي، پر از اتصال هستند كه نيازمند اين است كه هر "نود" از طريق فواصل طولاني ارتباط پيدا كند، نانوالكترونيك اجرائي طرفدار ارتباطات محلي و ارتباطات در قالب مسافت كوتاه مي‌باشد. شبكه‌هاي عصبي مبتني بر جمع زدن به منظور اندازه‌گيري وزن اتصال تحت خطاي ناشي از رفتار طبيعي و كاتوره‌اي ترانزيستورهاي تك الكتروني مقيد است.

 اين پژوهشگران قيدهاي حاكم بر اين مسأله را به صورت زير پيشنهاد كردند:

   ·        تعاملات بين اتصالات محلي بر مبناي توپولوژي خطي كه كاوشگر زمان تأخير است

   ·        يادگيري Hebbian و شرايط كلاسيك به عنوان روش‌هاي آموزش و اصلاح

   ·        ضامن‌هاي تك الكتروني به عنوان مبناي نانوساختارهاي دودوئي سيگنال آنالوگ اتصال دهنده موسوم به (BiWAS) معرفي شدند.در اين راستا ارسال و انشعاب سوئچ‌هاي ضامني پيشنهاد شد.

اين بلوك‌هاي ساخته شده به منظور طراحي 2 بعدي آرايه‌هاي اتصالي مربعي تطبيق‌پذير، استفاده مي‌شود.

آزمايش‌هاي مرتبط با «آرايه‌هاي رشد آزاد» نشان داد كه براي يك اتصال نوعي از"Cerebral cortex" (هر سلول شبكه به 10.000 اتصال مي‌يابد)، ظرفيت اتصال تنها به چند اتصال در سانتيمتر مربع اجازه اتصال مي‌دهد.

يك توپولوژي اميدبخش ديگر بر پاية اتصال به نزديك‌ترين همسايه در فضاي 2 بعدي يك شبكة مش‌بندي شده، بود.به گونه‌اي كه نورون‌ها بر روي چهار خط "axonic" وچهارخط"dendritic" ارتباط پيدا مي‌كردند. خطوط ارتباطي به وسيلة يك تك الكترون BiWAS به هم ربط مي‌يافتند. اين معماري، ظرفيت شبكة عصبي را به بالاتر از 108 عصب در سانتيمتر مربع ارتقاء مي‌داد.

معماري نوين ديگر مبتني بر شبكه‌هاي عصبي، بر رفتار طبيعي و كاتوره‌اي و تونل زنندة تك الكترون استوار بود. يك ماشين شبكة عصبي"بولتزمان" مبتني بر ارتباط دو سويه نودها به گونه‌اي كه هر نود با هر نود ديگري در ارتباط باشد. هر عصب يك حالت خروجي دودوئي دارد كه بر حسب يك قانون كاتوره‌اي انتقالي در پاسخ به ورودي‌ها، عوض مي‌شود. همة عصب‌ها به صورت موازي عمل مي‌كنند. با هر تنظيم حالت، در پاسخ به تغييرات حالت ديگر عصب‌ها عوض مي‌شوند. يك نوسانگر ديجيتالي با استفاده از يك مدار تك الكتروني كه نوسان‌هاي تصادفي 1-/1 را به وجود مي‌آورد، نيازمندي‌هايي جريان دودوئي بولتزمان را تأمين مي‌كند. هر چند كه هنوز مسائل مربوط به ارتباطات حجيم در اين قالب مورد بررسي قرار نگرفته است.

به نظر مي‌رسد كه شبكه‌‌هاي عصبي براي كاربردي كردن نانوالكترونيك در جهت حل مسأله تلرانس خطا، جذاب باشد. از آنجائي كه محاسبات از طريق آرايه‌ها توزيع مي‌يابد، ممكن است سيستم نسبت به خطاهاي داخلي جزئي، غير حساس باشد. از سوي ديگر، از آنجائي كه محاسبات توزيع مي‌شود، يك خطا در يك عصب يا اتصال به صورت بالقوه شبكه را تحت تأثير قرار مي‌دهد. يافته‌ها نشان مي‌دهد كه درجة تلزانس خطاي يك شبكة عصبي بسته به درجة افزونگي در تعادل دارد.

يك راه حل براي افزايش تلزانس خطا در شبكه‌هاي عصبي،‌ بهبود پروسه‌هاي يادگيري به منظور اعمال نيرو به يك عصب به منظور تحمل كردن تغييرات بزرگتر در سيگنال‌هاي ورودي است. يكي از روش‌ها، بالا بردن تلرانس خطا بر مبناي توابع "Gaussian radialاست كه چند نود را به سمت صفر ميل مي‌دهد (به منظور شبيه‌سازي تأخير در خطاهاي صفر) و سپس كل شبكه را ساماندهي مي‌كند.

متناوباً، خروجي عصب‌ها، به منظوربررسي يك مقدار داده شده كه به نظر داراي خطا مي‌باشد ثابت نگه داشته مي‌شود به همين ترتيب وزن هر يك از عصب‌ها به منظور رسيدن به خطاي مطلوب عوض مي شود.

 تمام اين مدل‌ها افزونگي در شبكه را به صورت ضمني لحاظ مي‌كنند.

Phatak” و”Koren” ، ثابت كردند كه افزونگي، triple-modular لازم است تا تلرانس كامل به منظور "forward Feed "شبكة عصبي برقرار شود. بنابر اين، در حالات حدي، بکارگيري مدل شبكة عصبي همان نيازمندي‌هائ را مي‌طلبد كه مدل‌‌هاي محاسباتي كلاسيك مي‌طلبند.

 


منبع:http://www.nano.ir

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 25 فروردین 1395 ساعت: 10:58 منتشر شده است
برچسب ها : ,
نظرات(0)

تكنيك‌هاي بهينه‌سازي در فضاي نانومحاسبات

بازديد: 93

تكنيك‌هاي بهينه‌سازي در فضاي نانومحاسبات




 


تكنيك‌هاي بهينه‌سازي، چه در فضاي رياضيات پيوسته و چه در فضاي رياضيات گسسته، اثري عميقي بر طراحي مهندسي گذاشته است. در اين مقاله اثر تكنيك‌هاي بهينه‌سازي در مقابله با فضاي نانومحاسبات را در پنج حوزه:

  • الف) سطوح انرژي پتانسيل (PES)
  • ب)‌ روش‌هاي كمينه سازي انرژي (الگوريتم‌ها)
  • ج) مدل‌سازي مرحلة انتقال فاز
  • د) ساختار بيشترين كمينه
  • ه) مدل‌سازي مسير برهم‌كنش‌ها
پنج حوزة فوق را در شكل زير ملاحظه مي‌كنيد:

مفاهيم بهينه‌سازي در سطوح انرژي پتانسيل:

  • گراديان: مشتق اول انرژي نسبت به هندسه (z ,y, x )، كه به نام "نيرو" نيز خوانده مي‌شود. 
    (دقيقاً، گراديان با علامت منفي مفهوم نيرو مي‌دهد)
  • نقاط سكون : عبارت است از نقاطي بر روي PES كه گراديان (نيرو) صفر است. اين نقاط شامل: حداكثر، حداقل، گذارفاز، و نقاط زيني " مرتبة بالاترند.
مفاهيم فيزيكي PES:
  • Hessian: مشتق دوم PES نسبت به هندسه و تشكيل ماتريس نيرو را گويند
  • "بردار ويژه" و "مقدار ويژه": قطري كردن ماتريس Hessian، "بردار ويژه" مي‌دهد كه مدهاي نرمال ارتعاش هستند و مقادير ويژه نسبت به مجذور كردن فركانس‌هاي ارتعاشات به دست مي‌آيد.

علامت مشتق دوم:

علامت مشتق دوم براي افتراق ميان MAX و MIN بكار مي‌رود. Min روي PES داراي مقدار ويژه مثبت است (فركانس‌هاي ارتعاشي). MRX يا نقاط زيني (نقاط زيني نقاطي هستند كه داراي جهت MAX از يك جهت و داراي جهت Min از سوي ديگر هستند) داراي يك يا بيشتر فركانس منفي مي‌باشد.
مفاهيم فوق را در شكل زير ملاحظه مي‌كنيد.

الگوريتم‌هاي كمينه‌سازي انرژي:
  •  روش كمينه‌سازي يك متغيره (شكل زير)

  1.  آسان در بكارگيري
  2. در يك جهت پيش مي‌رود تا زماني كه انرژي افزايش يابد. آنگاه به اندازة 90ْ تغيير جهت مي‌دهدو الي ...
  3. حداقل كارآئي (داراي گام‌هاي محاسباتي زياد، گام‌ها هدايت نمي‌شود)
  4. خيلي معمول نمي‌باشد.

روش سريعترين نزول

  1. ساده ترين روش مورد استفاده است.
  2.  به وسيلة منفي‌ترين گردايان هدايت مي‌شود.
  3. سريع‌ترين روش همگرائي از يك نقطة شروع ضعيف، است.
  4. به آرامي درنزديكي حداقل انرژي همگرا مي‌شود.
  5. در سرتاسر حوزة Min مي‌تواند "لي‌لي" كند.

روش گراديان مختلط:

  **  تاريخچه جستجو براي نقاط Min را با روش سريع‌ترين نزول تركيب مي‌كند و با استفاده از اطلاعات مشتق دوم خط سير كمينه‌يابي را هدايت مي‌كند.
  **  روش‌هائي كه در اين گروه قرار مي‌گيرند عبارتند از:
Fletcher-Reeves"" ،""Davidon- Fletcher- Powell و روش "Polak-Ribiere"

روش‌هاي مبتني بر مشتق دوم:

* "Hessian" تعيين كننده خط سير كمينه‌يابي است.
* پيچيدگي محاسبات افزايش مي‌يابد اما اين روش سريع‌تر و قابل اعتمادتر است به ويژه در همسايگي نقاط كميته.
*"Quasi-Newton" و ""Newton-Raphson و بلوك قطري "Newton-Raphson"
 روشهائي براي موقعيت‌يابي بيشترين كمينه:
  •  محرك‌هاي دوسطحي يا سيستماتيك
  •  كمينه‌يابي تصادفي (رندم) نظيير روش‌هاي مونت كارلو
  •  روش‌هاي ديناميك مولكولي (قوانين حركت نيوتون)
  •  Simulated Annealing (كاهش زمان (T) در خلال اجراي روش‌هاي ديناميك مولكولي)
  •  الگوريتم‌هاي ژنتيك (مبتني بر تئوري داروين در جمعيت، به كندي اصلاح مي‌شود، احراز حداقل انرژي، مبتني بر تكرار)
  •  روش‌هاي آزمون و خطا (روش‌هاي ضعيفي هستند)
 مفاهيم حداقل سطح انرژي
  •  آيا كنش /برهم‌كنش، اجزاء داراي رابطه‌اي با سطح انرژي هستند؟
  •  جه نتايج ديگري از حداقل كردن انرژي به دست مي‌آيد. (توزيع بولتزمان، اثر كلي برهمكنش‌ها، و توزيع احتمال و افت ترموديناميك؛ نتايجي هستند كه ممكن است از تحيل تابع انرژي بد ست آيد)
مدل‌سازي انتقال فاز (حالت گذار):
"حالت گذار" يك حالت ايستا است كه در آن مشتق دوم انرژي نسبت به مختصات واكنش منفي است در حالي كه مشتق دوم در ساير جهات مثبت است. به بيان ديگر، "نقطة حالت گذار" بالاترين نقطه، درسرتاسر مسير حداقل انرژي، ميان واكنش‌پذيرهاو محصولات، است. از نقطه نظر محاسبات فركانسي، بر روي يك نقطة گذار فقط و فقط يك فركانس منفي وجود دارد.
مدل‌سازي "انتقال فاز" مشكل است. زيرا:
  •  واكنش‌پذيرها و محصولات به خوبي با هويت مولكوليشان تعريف مي‌شوند در حالي كه "در انتقال فاز" اين گونه نيست
  •  به نظر مي‌رسد كه "حالت گذار" به نمايش گذارندة قيدهاي ممتد، قيدهاي گسستة مولكولي و ساير حالت‌هايي مزدوج از اين قيدهاي موثر، باشد.
  •  حالت‌هاي گذار به صورت آزمايشگاهي محاسبه مي‌شود. بنابر اين هيچ پارامتري براي مدلسازي آنها تعبيه نشده است.
  •  از نظر رياضي، در بهينه سازي توجه كمي به "نقاط زيني" شده است از اين رو الگوريتم‌هاي كمي براي چنين محاسباتي موجود است.
  •  عموماً فكر مي‌كنيم كه PES در مجاورت "انتقال فاز"، پهن‌تر از سطح در نزديكي Min است. از اين رو محاسبة ساختار دقيق انتقال فاز با دقت كمتري همراه است. از اين رو يك ساختار انتقال فاز منحصر به فرد و ساده ممكن است وجود نداشته باشد زيرا:
* اطلاعات اندكي نسبت به هندسة (TS) داريم. اغلب آنچه داريم مبتني بر محاسبات است. 
حدس زدن هندسة TS مشكل تر از حدس زدن هندسه يك ساختار ايستا است.
 روش‌هاي مختلط: بهترين روش‌هاي محاسباتي موجود
  •  روش حدس زدن هندسة TS.
  •  انجام دادن محاسبات سطح پائين (AM1 يا PM3) يا شبه تجربي جهت تعيين هندسة TS.
  •  استفاده از نتايج فوق به عنوان نقطة شروعي جهت سطوح بالاتر محاسبات.
  •  بررسي با استفاده از محاسبات فركانسي "در همان سطح تئوري و بر مبناي تكنيك‌هاي بهينه‌سازي هندسه.
  •  انتخاب بهترين سطح انرژي، انجام دادن محاسبات Single point Energy با روشي كه مبتني بر روابط ميان الكترون‌ها (نظير MP2) باشد.
 روش حدس زدن هندسة TS:
  • حدس زدن بر پاية شناخت مكانيزم‌ها (قضاوت مهندسي)
  •  انتخاب يك مقدار ميانگين ميان هندسة واكنش‌پذيرها و توليدات مبتني بر روش‌هاي "Spartan" يا "Gaussian". اين روش به نام " Linear Synchronous Transit" ناميده مي‌شود.
  •  روش‌هاي مبتني بر "Synchronous Transit Quadratic" كه در آن «حداقل» بر LST""عمود مي‌شود
در شكل زير روش‌هاي LST و QST را به صورت شماتيك نشان داده‌ايم.

 تطبيق‌پذيري يك TS حدسي:
  • يك "نقطة زيني" مرتبة اول بر روي PES به طور يكنواخت "واكنش‌پذير" را به "محصول" مي‌پيوندد.تحقيق در اين نكته كه"Hessian" فقط و فقط يك فركانس منفي را نتيجه دهد.
  • "Animate" كردن بردارهاي هادي فركانس. كه مي‌بايستي واكنش‌پذير را به توليد پيوند دهد
  • همة "واكنش‌پذير"ها را داراي نقطة TS نمي‌باشند.


منبع:http://www.nano.ir




منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 25 فروردین 1395 ساعت: 10:58 منتشر شده است
برچسب ها : ,
نظرات(0)

مرزهاي نانومحاسبات

بازديد: 169
منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 25 فروردین 1395 ساعت: 10:56 منتشر شده است
برچسب ها : ,
نظرات(0)

جهان رياضيات در فضاي نانو

بازديد: 77

جهان رياضيات در فضاي نانو




 


 

علوم نانو و فناوري نانو بيانگر رهگذري به سوي دنيايي جديد هستند. سفر به اعماق سرزمين اتمها و مولکولها نويد دهندة اثراث اجتماعي شگفت‌انگيزي است: در علوم بنيادين، در فناوريهاي نو، در طراحي مهندسي و توليدات، در پزشکي و سلامت و در آموزش. 
پيش‌بيني‌هاي گسترده در حوزه کشفيات جديد، چالشها، درک مفاهيم، حتي هنوز فرم و محتواي موضوع، مه‌آلود و اسرارآميز است. اين مقاله مي‌کوشد تا چالشهاي دنياي رياضيات را در مواجهه با دنياي شگفت‌انگيز نانو بررسي کند. به عبارت ديگر، رياضيات در معماري پازل نانو چه نقشي خواهد داشت:
همگان بر اين نکته توافق دارند که پيشرفتهاي بزرگ، مستلزم تعامل ميان مهندسان، ژنتيست‌ها، شيميدانان، فيزيکدانان، داروسازان، رياضيدانان و علوم رايانه اي ها است. شکاف ميان علوم و فناوري، ميان آموزش و پژوهش، ميان دانشگاه و صنعت، ميان صنعت و بازار بر مجموعه تأثيرگذار خواهد بود. دلايل کافي مبتني بر فصل مشترک ميان نظامهاي کلاسيک و فرهنگ ها موجود است.
اين انقلاب علمي و فناورانه، منحصر به فرد است. اين بدين معني است که مي‌بايستي نه تنها در بعد علمي، که در ساير ابعاد، نيز زيرساختهاي بنيادين با حداکثر انعطاف پذيري در برابر تغييرات را پيش‌گويي و پيش‌بيني کنيم.
دانش رياضيات به عنوان خط مقدم جبهة علم مطرح است. ويژگي بديهي رياضيات در علوم نانو «محاسبات علمي» است. محاسبات علمي در فناوريي که به عنوان فناوري انقلابي مطرح شده است. محاسبات علمي در طول، تفسير آزمايشات، تهية پيش‌بيني در مقياس اتمي و مولکولي بر پاية تئوري کوانتومي و تئوريهاي اتمي است. 
همانگونه که رياضيات زبان علم است، محاسبات، ابزاري عمومي علم و کاتاليزوري براي تعاملات عميق‌تر ميان رياضيات و علوم است. يک تيم محاسبات، دربارة مدلشان و اثر محاسباتشان و تطبيق‌پذيري آن با واقعيت، به بحث مي‌پردازند. «‌محاسبات» رابطي ميان آزمايش و تئوري است. يک تئوري و يک مدل رياضي، پيش نياز محاسبات است و يک آزمايش تنها اعتبار بخش هر نوع تئوري، مدل و محاسبات است. 
مدلهاي رياضي، ستونهاي راهگشا به سوي بنياد علم و تئوريهاي پيش بين هستند. مدلها، رابطهايي بنيادين در پروسه‌هاي علمي هستند و اغلب اوقات در سيستم‌هاي آموزشي به فاز مدلسازي و محاسبات، تأکيد کافي نمي‌شود. يک مدل رياضي بر پاية فرمولاسيون معادلات و نامعادلات اصول بنيادين استوار است و مدل درگير با درک کامل پيچيدگيهاي مسأله نظير، جرم، اندازة حرکت و توازن انرژي است. در هر سيستم فيزيکي واقعي تقريب اجازه داده مي‌شود، تا مدل را در يک قالب قابل حل عرضه کنند. اکنون مي‌توان مدل را يا به صورت «تحليلي» و يا بصورت «عددي» حل کرد. در اين حالت مدلسازي رياضي يک پروسه پيچيده است،زيرا مي‌بايستي دقت و کارآيي را همزمان نشان دهد. 
در علوم نانو و فناوري نانو، مدلسازي نقش محوري را بر عهده دارد، بويژه وقتي که بخواهيم عملکرد ماکروسکوپي مواد را از طريق طراحي در مقياس اتمي و مولکولي کنترل کنيم، آن هم در شرايطي که درجات آزادي زياد باشد. مدلسازي رياضي يک ضرورت در اين فضاي مه آلود است. تفسير داده‌هاي آزمايشگاهي يک ضروت حتمي است. همچنين براي هدايت، تفسير، بهينه سازي، توجيه رفتارهاي آزمايشگاهي، مدلسازي رياضي ضرورت مي‌يابد. 
يک مدل مؤثر، راه رسيدن به توليدات جديد، درک جديد رفتارشناسي، را کوتاه مي‌کند و تصحيح گر هوشمندي است که از نتايج گذشته درس مي‌گيرد.
مدلسازي نه تنها ويژگي منحصر به فرد رياضيات است بلکه پلي بسوي فرهنگهاي مختلف علمي است. 
تئوري در هر مرحله از توسعة علم، نقش محوري دارد، ارزيابي حساسيت مدل به شرايط پروسه‌هاي فيزيکي ، و حصول اطمينان از اينکه معادلات و الگوريتمهاي محاسباتي با شرايط کنترل آزمايشگاهي سازگارند، از چالشهاي مهم است. تئوري نهايتاً بسوي تعريف نتايج و درک فيزيکي سيستم، ميل خواهد کرد و اغلب اوقات رياضيات جديدي لازم نيست تا به منظور رسيدن به درک رفتار، ساخته شود. 
عبور از تئوريهاي موجود ارزشمند است و اغلب نيز اتفاق مي‌افتد. زماني مدلها، مشابه سيستم‌هاي شناخته شده هستند که دقت رياضي بالايي را داشته باشند اما در جهان شگفت ‌انگيز نانو، مدلهاي مختلف و جديد، چالشهاي جدي را در دانش رياضيات پديد مي‌آورند. تئوريهاي جديد در مقياسهاي زماني غير قابل پيش‌گوئي اتفاق مي‌افتند و تئوريهاي قدرتمند در قالبهاي عميق شکل مي‌گيرند. ميان‌برهاي اساسي لازم است تا شبيه‌سازي صورت گيرد: 
طراحي در مقياس اتمي و مولکولي، کنترل و بهينه سازي عملکرد مواد و ابزار آلات، و کارآيي شبيه‌سازي رفتار طبيعي، از مهمترين چالشها است. اين چالش‌ها نويد دهندة برهم کنشهاي کامل ميان حوزه‌هاي مختلف رياضي خواهد بود. 
آثار اجتماعي اين چالش‌ها زياد و متنوع خواهد بود. 
منافع حاصل از مشغوليت رياضيدانان فعال، توازن با چالشهاي اصلي در زمينه رشد زيرساختهاي رياضيات، تغييرات در ساختار آموزش رياضيات، از جمله آثار ورود رياضيات به دنياي شگفت انگيز نانو خواهد بود. 
جامعه رياضي مي‌بايستي اصلاح شود: تئوريهاي بنيادين، رياضيات ميان رشته‌اي و رياضيات محاسباتي و آموزش رياضيات.
رياضيات چه حوزه‌هايي را در بر خواهد گرفت؟ الگوريتمهاي اصلي در حوزه‌هاي رياضيات کاربردي و محاسباتي، علوم کامپيوتر، فيزيک آماري، نقش مرکزي و ميان بر ساز را در حوزة نانو بر عهده خواهند داشت. 
براي روشن شدن موضوع برخي از اثرات رياضيات را در فرهنگ نانو بررسي مي‌کنيم:

  • روشهاي انتگرال گيري سريع و چند قطبي سريع: اساسي و الزامي به منظور طراحي کدهاي مدار (White, Aluru, Senturia) و انتگرال گيري به روش Ewala در کد نويسي در حوزه‌هاي شيمي کوانتوم و شيمي مولکولي (Darden 1999)
  • روشهاي« تجزيه حوزه»، مورد استفاده در شبيه‌سازي گسترش فيلم تا رسيدن به وضوح نانوئي لايه‌هاي پيشرو مولکولي با مکانيک سيالات پيوسته در مقياسهاي ماکروسکوپيک (Hadjiconstantinou)
  • تسريع روشهاي شبيه سازي ديناميک مولکولي (Voter 1997)
  • روشهاي بهبود مش‌بندي تطبيق پذير: کليد روشهاي شبيه پيوسته که ترکيب کنندة مقياسهاي ماکروئي، مزوئي، اتمي ومدلهاي مکانيک کوانتوم از طريق يک ابزار محاسباتي است (Tadmor, Philips, Ortiz)
  • روشهاي پيگردي فصل مشترک: نظير روش نشاندن مرحله‌اي Sethian, Osher که در کدهاي قلم زني و رسوب‌گيري جهت طراحي شبه رساناها مؤثرند (Adalsteinsson, Sethian) و نيز در کدگذاري به منظور رشد هم بافت ها (Caflisch)
  • روشهاي حداقل کردن انرژي هم بسته با روشهاي بهينه سازي غير خطي (الماني کليدي براي کد کردن پروتيئن‌ها) (Pierce& Giles)
  • روشهاي کنترل (مؤثر در مدلسازي رشد لايه نازک‌ها (Caflisch))
  • روشهاي چند شبکه‌بندي که امروزه در محاسبات ساختار الکتروني و سيالات ماکرومولکولي چند مقياسي بکار گرفته شده است.
  • روشهاي ساختار الکتروني پيشرفته ، به منظور هدايت پژوهشها به سمت ابر مولکولها (Lee & Head – Gordon)

 


منبع:http://www.nano.ir





منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 25 فروردین 1395 ساعت: 10:55 منتشر شده است
برچسب ها : ,
نظرات(0)

ساختن از پايين به بالا

بازديد: 179

ساختن از پايين به بالا




 


جيمز هيث در سرمقاله مهمان چاپ‌شده در سال 1999 در شماره ويژه گزارش تحقيقات شيمي كه به علوم نانو اختصاص داشت مي‌گويد : "در سالهاي اخير كمتر لغتي در علوم فيزيك و شيمي به اندازه " علوم نانو" و " نانوتكنولوژي" استعمال – درست يا نادرست- داشته است."هيث -استاد شيمي دانشگاه كاليفرنيا -مي‌نويسد : " چرا اين همه علاقه‌مندي و اغراق‌گويي؟!" توضيح علاقه‌مندي نسبتا" ساده است: در 15 سال گذشته ما شاهد انفجار ابزارهاي سنجش نسبتا" ارزان قيمت ، مثل ميكروسكوپي پروب‌اسكن‌كننده براي بازبيني و دستكاري مواد در مقياس طولي نانومتر بوده‌ايم. در همين مدت، رشته‌هاي فراواني كه نامربوط به اين رشته بودند (مثل مهندسي برق و زيست‌شناسي) ، نيز متوجه فهم و كنترل پديده‌هاي شيميايي و فيزيكي در اين مقياس طولي و نوعا" 1 تا 100 نانومتر شده بودند. دانشمندان آموخته‌اند كه چگونه اندازه و شكل مواد مختلفي را در سطح اتمي و مولكولي كنترل كنند و در جريان كار آنها خواص جالب توجه و ذاتا" مفيدي را كه بسياري از آنها غيرمنتظره بود، كشف كردند. 
چادميركين ، يك استاد شيمي كه بنياد نانوتكنولوژي دانشگاه نورث‌وسترن را اداره مي‌كند، مي‌گويد: " اين رشته در حال شكوفه‌زدن و تبديل شدن به نيرويي برتر در علم در چندسال آينده است . تقريبا" يك قطار سريع‌السير است، كه هيجان زيادي در موردش وجود دارد."
 با اين حال ميركين خاطرنشان مي‌كند : " در اين زمينه اغراق‌گويي‌هاي فراواني وجود دارد." بسياري از گزافه‌گويي‌ها حاصل پيش‌بيني‌هاي خوش‌بينانه نانوتكنولوژيست‌هاي آينده‌نگر از علوم نانوي ابتدايي كنوني است. 
 مثلا" نظريه‌پرداز نانوتكنولوژي ، اريك دركسلر، مدير موسسه Foresight - در پالوآلتوي كاليفرنيا- و بعضي از همكارانش طرح ساخت اتم به اتم بازورهاي رباتيك مولكولي را كه قادر به ساخت اشياي متفاوتي ازجمله بازوهاي رباتيك ديگر هستند ارائه داده‌اند. در يك نظريه جسورانه ديگر، ابزارهاي رباتيك برنامه‌ريزي شده كوچكتر از 100  نانومترآزادانه در جريان خون انسان حركت كرده ، سلولهاي سرطاني را شناخته و آنها را پيش از تبديل شدن به تومور به صورت انتخابي نابود مي‌كنند. 
بسياري از دانشمندان مشتاق به علوم نانو، اين ايده‌ها را افسانه‌هاي علمي تخيلي مي‌دانند. مثلا" فراسر استودارت استاد شيمي دانشگاه UCLA مي‌گويد :" اين رشته شروع بدي داشته است . چون تصاويري از اين دست در ذهن مردم نقش بسته است؛ مثلا" رباتهاي شناكننده در جريان خون كه اين يا آن موجود پليد را مي‌كشند." 

در نتيجه اين همه علاقه و گزافه‌گويي، تعريف نانوتكنولوژي تا حدّي نامشخّص مي‌باشد- تا مقداري به خاطر اين كه محقّقين زيادي ،حتّي آنها كه روي سيستمهاي ميكرومتري كار مي‌كنند، سعي مي‌كنند خودشان را زير چتر نانوتكنولوژي نگه دارند. بعضي نانوتكنولوژي را با مفهوم دركسلري آن براي ساخت ماشينهاي مولكولي قادر به دست‌كاري ماده با دقّت اتمي بكار مي‌برند. از سويي ديگر گاهي نانوتكنولوژي به صورتي دربرگيرنده همه ، زيست‌شناسي مولكولي و شيمي – تصويري كه ميركين آن را " احمقانه" مي‌نامد- در نظر گرفته مي‌شود.

 براي اينكه مطمئن شويد لازم است بدانيد شيميدانان عادت به كار در مقياس نانو متري داشته‌اند ولي به قول ميركين:" ساخت يك تركيب آن از طريق شيمي سنتري مرسوم، يك نمونه نانوتكنولوژي نيست." ولي به اعتقاد او، استفاده از تكنيكهاي خود چيدماني براي ايجاد اندك اجزاي مولكولي كه به صورت يك مولكول حلقوي بزرگ با ابعاد چندين نانومتري تلفيق شوند مورد برحقي از نانوتكنولوژي است.

 مورد دوم داراي اين تفاوت عمده است كه ساختارها با دستگاههايي كه  از 15 سال گذشته به قبل موجود نبوده‌اند ، توليد، توصيف، دستكاري و حتّي ديده مي‌شوند.ميركين تأكيد مي‌كند : " نانوتكنولوژي يك رشته وابسته به ابزار است و اين ابزارها به مرور در حال بهتر شدن هستند." 

استودارت(چپ) و هيث: زنجيره ها، تسبيح‌ها، و شبه تسبيح‌ها

جنبه كليدي ديگر نانوتكنولوژي اين است كه مواد نانومتري خواص شيميايي و فيزيكي متفاوتي نسبت به مواد انبوه ارائه ميدهند، كه مي‌تواند مبنايي براي فناوريهاي جديد باشد. مثلا" دانشمندان دريافتند كه مي‌توانند خواص الكتروني –و در نتيجه نوري – ذرات نانومتر ي را با تنظيم اندازه ذره تعيين كنند. بنابراين وقتي فلز طلا به صورت ميله‌هاي نانومتري درمي‌آيد، شدت فلوئورسانس آن بيش از 10 ميليون برابر ميشود. اين تحقيق كه اخيرا" توسط گروه مصطفي السّيّد، استاد شيمي بنياد فنّاوري جورجيا صورت گرفته، مشخّص شده است كه طول موج  منتشره به طور خطي با افزايش طول ميله افزايش مي‌يابد، در حالي كه شدّت نور با مجذور طول آن زياد مي‌شود. السّيّد توضيح مي‌دهد :" اين نانوذرات  نوع جديدي از مواد محسوب مي‌شوند، كه خواصشان نه تنها به تركيب شيميايي،كه به اندازه و شكل نيز وابسته است." اين خواص براي كاربردهاي ذخيره نوري اطلاعات، سيستمهاي فوق‌العاده سريع ارتباطات داده‌اي و تبديل انرژي خورشيدي مورد توجه قرار گرفته اند.

نانومواد از قبل نقشي كليدي در برخي فنّاوري هاي تجاري بازي مي‌كرده است. ولي  اين مقاله روي بعضي تحقيقات علوم نانو كه چندسال با ثمردهي تجاري فاصله دارد،تمركز يافته است.  هرچند به دليل نويددهي ايجاد تغييرات شگرف در توليد دستگاهها ، سنسورها، موتورها و بسياري موارد ديگر، بسيار تكان‌دهنده است.

 اين وسايل امروزه با يك مدل " بالا به پايين" ساخته مي‌شوند. مثلا" در صنعت ميكروالكترونيك از تكنيكهاي ليتوگرافيك براي حك كردن بلورسيليكون براي ايجاد مدارات و ابزارهاي ميكرومتري استفاده مي‌شود. اين تكنيك‌ها اخيرا" به نقطه‌اي پيشرفت كرده است،كه اشكالي با ابعاد نانومتري را نيز مي‌توان ساخت. هر 18 تا 24 ماه كه ابزارها ريزتر مي‌شود تعدادي كه از آن ميتوان در يك چيپ جا داد به دو برابر افزايش مي‌يابد.

 ولي چيپ‌سازان براي ادامه روند كوچك‌سازي در دهه آينده به شدت تحت فشار خواهند بود. براي كوچك شدن به حوزه چند نانومتري، چيب‌ها ديگر پاسخگو نخواهند بود . به علاوه هزينه ساخت خطوط توليد جديدي براي هر نسل جديد جيپ‌گران خواهد بود.

 نانوتكنولوژي نويد يك راه‌حل ارزان قيمت " پايين به بالا" را در الكترونيك و ديگر وسايل ساخته‌شده از اجزاي ساده‌تر مثل مولكولها و نانوساختارهاي ديگر را مي‌دهد. اين روش مشابه عمل طبيعت در ايجاد ساختمانهاي زيستي پيچيده است .

سوئيچ كردن با مولكول‌ها :

آزمايشگاه هيث در خط مقدم تلاشهاي انجام‌شده براي ساخت كامپيوتري از پايين به بالا- چيزي كه او آن را " نانوكامپيوتر الكتروني با چيدمان شيميايي" مي‌نامد- است. گروه او با همراهي يك شيميدان به نام استانلي ويليامز و يك معمار كامپيوتر به نام فيليپ كوئك از  آزمايشگاههاي Hewlett-packard  واقع در پالوآلتوي كاليفرينا، سبكهاي معماري بسياري براي چنين ماشيني مطرح كرده‌اند. و چندي بيشتر با همكاري گروه استودارت در UCLA شروع به ساخت آنها نمودند .

 هيث خاطرنشان مي‌كند : " وقتي شما به مردم مي‌گوييد كه مي‌خواهيد كامپيوتري بسازيد، آنها فكر مي‌كنند شما در حال استخدام شدن در Intel هستيد . مقصود ما چنين چيزي نيست." هدف او نشان دادن اين مطلب است كه يك نانوكامپيوتر ساده را واقعا" مي‌توان ساخت. او با ذهني مملو از چالشها مي‌گويد :" ما فكر مي‌كنيم اين تمريني سخت خواهد بود، كه سعي كنيم بفهيم چگونه يك چنين ماشيني را مي‌توان ساخت و سپس آن را عملا" بسازيم."

ابتدا هيث توضيح مي‌دهد كه پروژه شامل به نخ كشيدن دهها سوئيچ مولكولي و نانوسيم به صورت مدارات منطقي و مدارات حافظه و " فراهم‌آوري امكان گفتگوي آنها" است. سوئيچ‌هاي مولكولي‌اي كه محققيني UCLA روي آنها كار مي‌كنند ،" زنجيره"‌ها(Catennan) ، "تسبيح"‌ها (Rotaxane) و "شبه تسبيح‌"هايي است كه در دهه گذشته در آزمايشگاه استودارت ايجاد شده‌اند. ساده‌ترين مثال اين قبيل سوئيچ‌ها ، يك حلقه مولكولي است كه به صورت مكانيكي به يك حلقه متفاوت ديگر زنجير شده ( تا يك زنجيره را تشكيل دهد) يا روي يك مولكولي به بند كشيده شده است. ( تا يك تسبيح‌ يا شبه تسبيح‌ را شكل دهد) . در هركدام از اين ساختارها حلقه مزبور مي‌تواند دو موقعيت متفاوت كه بيانگر " 0" و " 1" ديجيتالي است داشته باشد، و به كمك اعمال ولتاژهاي متفاوت بين اين دو حالت سوئيچ كند.

براي اتّصال دادن سوئيچ‌هاي مولكولي، تيم UCLA در حال كاوش در زمينه استفاده از نانوسيمهاي سيليكوني و نانولوله‌هاي كربني كه در شبكه‌أي- به قول هيث "مثل يك صفحه ساعت"- قرار دارد،مي‌باشد. اين معماري مشتق‌شده از معماري كامپيوتر منحصر به فرد سيليكوني Teramac است كه توسط Hewlett –packard چندسال قبل ساخته شد . در هر بند اين شبكه، نانوسيمها با تك لايه‌اي از سوئيچ‌هاي مولكولي متصل شده‌اند. سال قبل، هيث استودارت و همكارانشان نشان دادند، كه سوئيچ‌هاي مولكولي از نوع تسبيح‌ را مي‌توان به صف كرد تا يك گيت منطقي ايجاد كرد، هرچند وضعيت اين سوئيچ‌ها تنها يكبار قابل تغيير بود.]C&EN,July 19,1999,Page 11[Science,285,391(1999);

   در آگوست گروه گام بعدي را برداشت و گزارش داد كه سوئيچ‌هاي مولكولي زنجيره‌اي را ميتوان بارها پيكربندي مجدد – يعني بين حالت روشن و خاموش سوئيچ"- نمود.[Science,286,1172(2000)] اگرچه تفاوت حالات "روشن" و "خاموش" ( از نظر مقاومت الكتريكي ) بسيار كمتر از حدي است كه براي مدارات منطقي مفيد باشد، ولي  اين سوئيچ‌ها، به گفته هيث، براي حافظه مناسب هستند . هيث خاطرنشان مي‌كند كه اهميت اين كار در اين بود كه براي اولين بار او فهميد كه سوئيچ‌هاي مولكولي مي‌توانند تحت شرايط عادي، بارها و بارها عمل كنند.

تك لايه اي از "زنجيره‌ها" كه بين دو صفحه الكترود محدود شده، به عنوان سوئيچ مولكولي عمل مي‌كند

         

 

        محققين UCLA  هم‌اكنون سوئيچ‌هاي مولكولي قابل تغيير ديگري دارند كه نسبت به مورد ماه آگوست پيشرفتهاي زيادي كرده است . آنها انتظار دارند به زودي، اين سوئيچ‌ها را در مدارات منطقي و حافظه بكار ببرند. هيث مي‌گويد :" پس از آن ما بايد آن سوئيچ‌ها را وارد گفتگو با هم كنيم، تا شما صاحب يك كامپيوتر شويد. نمونه اوليه چنين كامپيوتري تنها سه يا چهار سال ديگر وقت مي‌خواهد.

به سمت يك استراتژي نانوسلولي :

يك مدل كاملا" متفاوت براي ساخت كامپيوترهاي مولكولي از پايين به بالا در مركز علوم و فناوري نانوي دانشگاه رايس درهوستون پيگيري مي‌شود. استاد شيمي جيمز تور و همكارانش در آنجا سيمهاي مولكولي را ساخته و مطالعه كرده‌اند. نانوسيمهاي آنها رشته‌هاي مزدوجي است كه در آنها به عنوان مثال حلقه‌هاي عاملي‌ بنزن بطور يك در ميان با گروههاي استيلني قرار گرفته است. اين سيمها گروههاي عاملي خاصي در دو سر خود دارند كه مثل " گيره‌هاي تمساحي" موجب اتصال سيمها به طلا يا  الكترودهاي ديگر مي‌شوند. با استفاده از چنين تكنيكهايي تور و همكار تمام وقتش مارك ريد، استاد مهندسي برق و فيزيك كاربردي دانشگاه ييل، توانسته‌اند جريانهاي الكتريكي كوچكي را كه از ميان اين سيمها مي‌گذشت، اندازه‌گيري كنند.
 آزمايشگاه تورمولكولهاي مشابه ديگري نيز ساخته است، مثل حلقه‌هاي آروماتيك با گروههاي استيلني يك در ميان كه به صورت ديوديا سوئيچ مولكولي عمل مي‌كنند. سال گذشته مثلا" تور و ريد تك لايه‌اي از چنين مولكولي گزارش كردند، كه وقتي تا 60 درجه كلوين سرد مي‌شد، رفتار سوئيچ‌كنندگي غيرعادي نشان مي‌داد كه در ابزارهاي سيليكوني مرسوم ديده نشده است.] C&EN,Nov 22,1999,Page11 [Science,286,1550(1990); وقتي به اين تك لايه ولتاژي با افزايش منظم اعمال مي‌شد مولكولها تا قبل از يك آستانه ولتاژي، جريان محسوسي را عبور نمي‌دادند و پس از آن با افزايش ولتاژ جريان به سرعت افزايش يافته و سپس قطع مي‌شد. ريد و تور اين رفتار سوئيچ‌كنندگي را كه به مقاومت تبعيضي منفي ( NDR ) معروف است، در مولكول مشابهي در دماي اتاق نيز مشاهده كردند ، هرچند كه تأثير آن چندان گيرا نبود. از آنجاكه اين مولكولها مي‌توانند بين دو حالت اكسيداسيون پايدار سوئيچ كنند، مي‌توانند اطلاعات را به شكل "0" (حالت عايق)، يا "1" (حالت رسانا) ذخيره كنند و درنتيجه به عنوان حافظه مولكولي بكار روند. [Appl.Phys.Lett.,77,7224(2000)]

   تور: آموزش دهي نانوسلولها براي محاسبه                              

 

 

 

مولكولهاي داراي خواص دستگاهي غيرعادي مثل NDR از منظر علمي ، به گفته هيث ،"بسيار جالب توجه اند. اين هيجان‌انگيز است كه شما بتوانيد خاصيتي را در يك مولكول با استفاده از تكنيكهاي مرسوم بيافرينيد و مشاهده كنيد كه آن خاصيت در يك دستگاه قابل اطمينان با قراردادن آن مولكول بين دو الكترود ، ظهور پيدا كند. اين نتيجه‌اي است كه هيچ‌كس انتظار ديدنش را نداشت. اين به معناي آن است كه شما مي‌توانيد به قصر كاملي از وسايل با خواص منحصر به فرد فكر كنيد."

توروريد در تحقيقاتشان دريافتند كه اين مولكول در 60 درجه كلوين ، مقاومت منفي جزئي (يك نوع رفتار سوئيچي) از خود بروز مي‌دهد و مثل يك حافظه قادر به ذخيره اطلاعات است.

تور اميدوار است كه چنين مولكولهاي عمل‌كننده‌اي را براي ساخت يك كامپيوتر مولكولي بكار بگيرد. همانطور كه درماه آگوست در يك سخنراني در همايش ملّي جامعه شيمي آمريكا در واشنگتن ايراد كرد، اين كامپيوتر از واحدهاي ساده‌اي كه " نانوسلول"  ناميده مي‌شوند تشكيل شده است. اين واحدها بطور شيميايي خودچيدمان هستند و براي انجام كار لازم برنامه‌ريزي مي‌شوند.

 فرايندهاي خودچيدماني كه در قلب اقدامات دانشگاههاي رايسييل و UCLA براي ساخت كامپيوتر مولكولي قرار گرفته است، ناكاملند. يعني قادر به تضمين موقعيت و جهت صحيح يك مولكول خاص نيستند. البته اين خيلي مهم نيست، چون هر دو طرح كامپيوتري نسبت به نقايص اغماص زيادي دارند.از اين جهت تمايز خشني با كامپيوترهاي امروزي دارند كه با يك عنصر معيوب زمين‌گير مي‌شوند.

 نانوسلولي كه تور و همكارانش بدست آورده‌اند، حدود يك ميكرومترمربع است و شامل يك آرايه دو بعدي از چندصد نانوذره فلزي است كه توسط حدود 1500 مولكول عمل‌كننده (مثل آنهايي كه NDR را بروز مي‌دهند) به هم متّصل شده‌اند. اين مولكولها ، نانوذرات را به درگاههاي ورودي و خروجي پيرامون نانوسلول نيز متّصل مي‌كند. بنابراين با تركيبات متفاوتي از اين دريچه‌هاي ورودي و خروجي ، مي‌توان مسيرهاي حامل جريان مختلفي را مشخّص كرد.

يك  چيپ آزمايشي (چپ) كه توسط ريد طراحي شده و براي مطالعه مشخّصات جريان /ولتاژ مولكولهايي كه تور آماده كرده است بكار گرفته شده است . دو تصوير سمت راست نماهاي بزرگتر شده مركز دو الگوي مربعي مختلف روي چيپ است. در تصاوير بزرگ‌شده ، سيمهاي در طول لبه‌ها تا دنياي ماكروسكوپي امتداد يافته‌اند. دراينجا دريچه هاي تست قادر به قلاب شدن و گير كردن هستند. بعضي از خطوط ليتوگرافي كه در مناظر بزرگ‌شده، ديده مي‌شوند، در تماس با صفحات طلايي كه 3/0 تا  1]ميكرو[ متر فاصله دارند، قرار مي‌گيرند. وقتي چيپ بطور آني در محلولي از تركيب آزمايشي قرار مي‌گيرد، مولكولها خودشان را در عرض اين صفحات سوار مي‌كنند . خواص الكتريكي اين مولكولها را مي‌توان مطالعه كرد.

به گفته تور، ترتيب نانوذرات و مولكولهاي اتّصال‌دهنده در اين مسيرها، تصادفي است و مسيرها احتمالا" در ابتدا قادر به انجام هيچ عمل منطقي نخواهند بود ولي با اعمال پالس‌هاي ولتاژي به تركيبات مختلف دريچه‌هاي ورودي و خروجي، امكان آن وجود دارد كه مولكولها را گروهي " روشن" يا " خاموش" كرد. اين كه كدام سوئيچ روشن (رسانا) و كدام يك خاموش (عايق) است، مشخّص نيست، ولي اهميتي هم ندارد. در يك روال حدس و خطايي ، الگوريتم‌هاي كامپيوتري خاصي بطور پشت سرهم كار تست و تعمير را (با استفاده از پالس‌هاي ولتاژي با مقادير متفاوت) انجام مي‌دهند تا اين كه آن مسير عمليات مطلوب را مثلا" به عنوان يك گيت يا افزاينده منطقي انجام دهد. يك كامپيوتر مولكولي واقعي حداقل شامل صدهزار تا يك ميليون نانوسلول خواهد بود ، كه با ليتوگرافي معمولي به هم مرتبط شده‌اند. پس از اين كه اولين نانو سلولها تعليم داده شدند، آنها به صورت تست‌كننده و تعليم‌دهنده نانوسلولهاي اطرافشان عمل خواهند كرد . بنا به گفته تور، اين نحوه " خود راه‌اندازي" امكان برنامه‌ريزي و تعليم‌دهي سريع و اتوماتيك نانوسلولها را فراهم مي‌آورد.

او همكارانش قبلا" با مدلسازي (شبيه‌سازي) نشان داده بودند كه به يك نانوسلول مي‌توان انجام يك عمل خاص را تعليم داد. ولي تور مي‌گويد:"ما هنوز يك نانو سلول كامل را نساخته‌ وبه آن برنامه نداده ايم. هرچند چنين برنامه‌ريزي‌اي در عرض شش‌ماه صورت خواهد گرفت." گذشته از اين مسئله، او و اعضاي تيم‌اش هنوز بايد بر معضلات دشوار بسيار ديگري فائق آيند تا يك نمونه موفق از كامپيوتر مولكولي‌شان را عرضه كنند.

 مشابه  دانشمندان UCLA ، تور نيز فكر نمي‌كند كه كامپيوتر مولكولي در كوتاه‌مدت جايگزين كامپيوترهاي سيليكوني فعلي شود. با اين حال، الكترونيك مولكولي اولين مورد مصرف خود را در سيستمهاي مخطوط كه مولكولها در هماهنگي با سيليسيم عمل مي‌كنند" خواهد يافت.

سوئيچ كردن با نانولوله‌ها :

همه مدلهاي محاسبه مولكولي الزاما" برمبناي مولكولها نيست، كه با سنتز آلي مرحله به مرحله قابل دسترسي باشند. مثلا" در دانشگاه هاروارد ، استاد شيمي چارلز ليبر و همكارانش - توماس روئكس، كيونگ‌ها كيم، و  ارنستو جوزلويچ - در حال بكار انداختن نانولوله‌هاي تك ديواره (SWNTها) براي استفاده در اجزاي دستگاهي (مثل سوئيچ‌ها) و سيمها براي خواندن و نوشتن اطلاعات هستند.

 ايده ليبر عبارتست از الگودهي يك آرايه از نانولوله‌هاي موازي- روي يك لايه نازك دي‌الكتريك (عايق) كه نمونه رسانا را پوشش مي دهد- كه سپس در بالاي اين آرايه ، آرايه موازي ديگري از نانولوله‌ها، به زوايه قائمه به صورت آويزان قرار مي‌گيرد. نانولوله‌هاي بالايي بطور غيرهم‌سطح پاييني‌ها را قطع مي‌كنند، چون به كمك بلوك‌هاي تكيه‌گاهي با فواصل منظم 5 نانومتر بر فراز نانولوله‌هاي پاييني نگه داشته‌شده‌اند. هر نانولوله در انتهايش به يك الكترود فلزي متّصل است. ليبر و همكارانــش در مقالــه جديدشان [Science,289,94(2000)]  اين چنين بيان كردند : " هر نقطه تقاطع در اين ساختار يك عنصر دستگاهي محسوب مي‌شود". و هر عنصر دستگاهي در دو حالت مي‌تواند باشد : در حالت " خاموش"  لوله‌هاي متقاطع كاملا" از هم جدا بوده و لذا مقاومت تماسي در اين نقطه بسيار بالاست. در مقابل، در حالت " روشن"  نانولوله‌هاي بالايي به سمت لوله‌هاي پايين آنقدر كشيده مي‌شوند تا با آنها تماس يابند ، كه در نتيجه مقاومت تماسي فوق‌العاده كم خواهد شد.

                                                             

 ليبر: آرايه‌هاي نانولوله ‌ نانوسيم 

اين محققين مي‌نويسند: " با باردار كردن گذراي نانولوله‌ها- به منظور توليد نيروهاي الكترواستاتيك جاذبه يا دافعه‌اي- يك عنصر دستگاهي مي‌تواند بين اين دو حالت تعريف شده- روشن و خاموش- سوئيچ كند." اين كار با اعمال پالس ولتاژي به زوج‌الكترودهايي كه يك نقطه تقاطع خاص را نشانه گرفته‌اند، صورت مي‌گيرد. به گفته ليبر، وضعيت – روشن يا خاموش – هر نقطه تقاطع را با سنجيدن مقاومت تماسي به راحتي مي‌توان خواند. چنين آرايه متقاطعي را نه تنها براي شكل‌دهي عناصر منطقي كامپيوترها ، كه به عنوان يك حافظه دسترسي اتفاقي (RAM) غير فرار نيز مي‌توان بكار برد، چراكه مزاياي‌قابل ملاحظه‌اي نسبت به RAMهاي نيمه‌هادي مرسوم از نظر اندازه، سرعت و هزينه دارا مي‌باشند. ليبر مثلا" مي‌گويد، كه  1012  عنصر دستگاهي را مي‌توان در     2 Cm 1 از يك چيپ جا داد. اين در حالي است كه يك  چيپ پنتيوم با اين اندازه  107 تا  108 قطعه را در خود جا مي‌دهد. به علاوه، هر عنصر اين حافظه نانولوله‌اي قادر به ذخيره يك بيت است، در حالي كه ابزارهاي سيليكوني فعلي، به يك ترانزيستور و يك خازن براي ذخيره يك بيت در RAM متغير (كه بايستي پي در پي از نو پر شود ) يا چهار تا شش ترانزيستور براي ذخيره يك بيت در RAM  ايستا نيازمندند. اضافه بر اين، بنا به ازمايشات و محاسبات انجام شده،RAM نانولوله‌اي عمل سوئيچينگ را با سرعت GHz100 ، يعني 100 برابر سريعتر از نسل جديدچيپ هاي  شركت اينتل انجام مي دهند.

آزمايشات گروه هاروارد تاكنون روي اتّصالات منفرد كلاف‌هاي با قطر 20 تا 50 نانومتر نانولوله كه به "طناب" موسوم هستند، صورت گرفته است. در چندين دستگاه مشابه ، ليبر و همكارانش سوئيچينگ بازگشت‌پذير را بين دو حالت تعريف‌شده روشن و خاموش مشاهده كرده‌اند : " ما فكر مي‌كنيم اين آزمايشات كاملا" ايده معماري ارائه‌شده از طرف ما را اثبات مي‌كند."

بااين حال اتّكا صرف به نانولوله‌ها براي اين آرايه متقاطع مشكل‌زاست. محققين هاروارد بطور آرماني دوست دارند ، آرايه‌ها را با SWNT هاي منفرد با ضخامت نانومتري بسازند – نانولوله‌هاي نيمه‌هادي در پايين و نانولوله‌هاي فلزي در بالا. ليبر در اين باره مي‌گويد : " ما هميشه نيازمند اتّصالات فلز /نيمه‌هادي خواهيم بود" – براي عمل يكسوسازي؛ يعني به جريان فقط در يك جهت اجازه عبور مي‌دهند. اتّصالات يكسوساز موجب اطمينان از اين مي‌شود، كه وضعيت هر اتّصال را مستقل از بقيه بتوان خواند.

 متأسفانه كسي نمي‌داند چگونه نانولوله‌ها را بنا به نياز به شكل فلزي يا نيمه‌هادي بسازد.اين محققين نوعا" كار خود را با بكارگيري مخلوطي از انواع متفاوت نانولوله‌ها يا انجام مشاهدات شانسي صورت مي‌دهند. يك راه براي فائق آمدن براين مشكل استفاده از نانوسيمهاي نيمه‌هادي آغشته در كنار نانولوله‌هاست. گروه ليبر چند سال گذشته را صرف توسعه يك روش كاتاليتيكي ليزري براي ايجاد نانوسيمهاي با اندازه‌هاي گوناگون، منجمله نيمه‌هادي‌هاي سيليسيم، ارسنيدگاليم، فسفيد اينديم و غيره كرده‌اند . اين روش به قول ليبر، امكان ، " كنترل سنتزي بالايي" را روي قطر ، طول و خواص الكتريكي اين نانوسيمها فراهم مي‌آورد.

 اخيرا" به عنوان مثال  گروه او نشان داده اند، كه نانوسيمهاي سيليكوني را مي‌توان با ديگر عناصر آغشته كرد تا مواد نيمه‌هادي نوع N (آغشته به الكترون) يا نوع P (آغشته به حفره) را بدست دهد.,104,5213,(2000)] J.Phys.Chem.B [ليبر خاطرنشان مي‌كند : " يك نانوسيم سيليكوني نوع N، هميشه با يك نانولوله‌ اتّصالي يكسوساز را شكل مي‌دهد؛ چه نانولوله فلزي و چه نيمه‌هادي باشد." بعلاوه با تقاطع نانوسيمهاي آغشته با نانولوله‌ها، اتّصالات دستگاهي با انواع مختلفي از خواص الكترونيكي را مي‌توان داشت. و لذا اگر شما به ساخت ابزارهاي مخلوط علاقه‌مند باشيد، وارد كردن اجزاي سيليكوني] آغشته[ به دستگاهتان  معني‌دار خواهد بود.

نماي سه بعدي ايده ليبر براي يك آرايه متقاطع معلّق با چهار اتّصال نانولوله (عناصر دستگاهي) ، كه دو تا آنها در وضعيت " روشن" (در حال تماس) و دوتاي ديگر در وضعيت " خاموش" (جدا ازهم) قرار دارند. نانولوله‌هاي پاييني روي يك لايه نازك دي‌الكتريك ( مثلا" Sio2)  هستند، كه در بالاي يك لايه رسانا ( مثلا" سيليسيم با آغشتگي بالا) قرار گرفته‌است. نانولوله‌هاي بالايي به كمك چند تكيه‌گاه (بلوكهاي خاكستري) آويزان شده‌اند. هر نانولوله به يك الكترود فلزي (بلوكهاي زرد) متّصل است.

 چگونه اين آرايه‌هاي متقاطع ساخته مي‌شوند؟ يك استراتژي نويدبخش ، به گفته ليبر ، الگودهي شيميايي سطح به صورت خطوط موازي با فاصله چندنانومتر و سپس استفاده از يك جريان مايع روي سطوح الگودهي شده براي رديف كردن نانوسيمها در آن الگوهاست. وي مي‌گويد : " ايجاد آرايه معلّق نيازمند حقّه بيشتري است،" ولي ممكن است با رشد كنترل شده نانولوله‌ها ازنانو ذرّات كاتاليستي، ]فرايند ساخت نانولوله[ اين كار را بتوان انجام داد.

ليبر مي‌گويد گروهش ديوانه‌وار كار مي‌كند تا آرايه‌هاي متقاطعي را بسازد كه شامل 16000 اتّصال و " دانسيته‌اي فراتر از آنچه در چند سال آينده فناوري سيليسيم مي‌تواند انجام دهد" باشد. به گفته او، چنين چيپي        به معناي طي كردن بخش مهمي از راه است – البتّه يك قسمت خيلي كوچك از راه دراز تجاري شدن فناوري نانوالكترونيك.

چيدمان و محاسبه متكي بر DNA :

ايده آرايه‌ها، سيمهاي متقاطع، و محاسبات در كارهاي استاد شيمي نادريان سيمن در دانشگاه نيويورك نيز نمود يافته است. ولي در اين مورد، سيمها ، رشته هاي زيگزاك ، به هم بافته و متقاطع DNA هستند كه مشابهشان در طبيعت ديده نشده است. برخي از اين مولكولها براي ساخت اشيا و ابزارهاي نانومتري برپايه DNA يا حتي محاسبه DNA اي مناسب هستند.

در طول دو دهه گذشته ، سيمن از پتانسيل DNA براي ساختن يا به عنوان مواد ساختماني ساختارهايي مثل بلورها يا نانوابزارها، بهره جسته است. او و همكارانش با استفاده از مولكولهاي DNA شاخه‌دار دو رشته‌اي با سرهاي چسبنده ( لبه‌هاي رشته‌هاي‌ DNA كه مي‌توانند به لبه‌هاي مكّمل رشته‌هاي DNA ديگر متّصل شوند)، اشياي نانومتري پيچيده‌اي مثل مكعب، هشت‌وجهي ناقص و ديگر اشكال ساخته شده ازDNA را بدست آورده‌اند.

سيمن اميدوار است در نهايت قادر به ساخت ساختمانهايي تو در تو به شكل دو و سه بعدي باشد، به نحوي كه نيازي به تعيين مكان ويژه اي روي- براي يك جزء خاص كه بايستي وارد آرايه شود- نباشد. وي مي‌گويد : " من معتقدم اين مسئله ما را واقعا" به جامدات طرّاح و مواد هوشمند مي‌رساند."

 بااين حال خاطرنشان مي‌كند،كه   به عنوان يك ماده ساختماني ، DNA شاخه‌دار معمولا" فاقد سفتي است. بنابراين در سالهاي اخير گروه او، نحوه‌هاي چيدني از رشته‌هاي DNA ارائه داده‌اند كه استحكام ساختماني بيشتري داشته، و براي ساخت آرايه‌هاي دو بعدي DNA و يك ابزار نانومكانيكي كه بازوهاي صلب آن فقط بين دو حالت ثابت قادر به چرخش‌اند، بكار گرفته شده‌اند.

 آخرين شاهكار سيمن در اين راستا، مولكولهاي موسوم به چليپاي سه گانه است كه چهار رشته DNA با هم تركيب شده‌اند تا سه مارپيچ دو رشته‌اي مسطح موسوم به كاشي را به وجود بياورند.] J.Am.Chem.Soc.,122,1848(2000) [ اين مارپيچ‌ها ازطريق چهار نقطه، كه رشته‌هاي يك مارپيچ به مارپيچ ديگر وصل مي‌شوند ، به همديگر زنجير شده‌اند. و البتّه  مي‌توانند رشته‌هاي چسبيده همتاي خود را مبادله ‌كنند. مارپيچ مركزي با حلقه‌هاي سنجاقي در دو سر بسته شده است،ولي مارپيچ هاي ديگر سرهاي چسبنده‌اي دارند كه به كاشي‌ها امكان مي‌دهد يكديگر را بشناسند.

 بنا به گفته سيمن و همكارش جان‌ريف ، يك استاد علوم كامپيوتر دانشگاه دوك، سرهاي چسبنده شامل اطلاعاتي هستند كه به كاشي امكان مي‌دهد خودچيدماني را به صورتي كه يك محاسبه منطقي صورت گيرد، انجام دهند. [Nature,407,493(2000)]  آنها و همكارانشان چنگ‌دي مائو و توماس لابين به كمك عمل منطقي موسوم به "XOR فزاينده" از اين كاشي‌ها براي انجام چهار مرحله محاسباتي روي رشته‌اي از صفر و يك‌ها استفاده كرده‌اند. نتيجه عمل XOR، "0" است كه اگر دو عدد پياپي مشابه باشند (0 و 0 يا  1 و 1) و  1 است،  اگر دو عدد متوالي متفاوت باشند. ارزش هر كاشي (0 يا 1) به كمك يك “محل محدوديت” (توالي خاصي از DNAكه شناخته‌شده و با آنزيمهاي "محدوديت" بريده مي‌شوند) مشخّص مي‌شود.

كاشي‌هاي ورودي و خروجي ، سرهاي چسبنده متفاوتي دارند.و در محلول با كاشي‌هاي" نبشي" مخلوط هستند. كاشي‌هاي نبشي ارزشهاي محاسبه را در ابتداي كار وارد كرده و به تاسيس يك قالب كاري براي ارتباط كاشي‌هاي ورودي و خروجي كمك مي‌كنند. كاشي‌ها مطابق الگوريتمي كه توسط كاشي‌هاي خروجي تعيين شده است، عمل خود چيدماني را انجام مي‌دهند (به طور اتوماتيك كنار هم قرار مي‌گيرند.) كـاشي‌هاي ورودي در ابتدا در يك وضعـيت مسطح پلكاني چيده مي‌شوند.و بسته به نحوه مرتّب شدنشان، كاشي‌هاي خروجي خود را- ازطريق جفت شدن سرهاي چسبنده مكمل يكديگر- در شكافهاي كوچك موجود روي پلكان جا مي‌دهند.

سيمن: محاسبه نانوهرتز با          DNA

 پس از كامل شدن مجموعه، پاسخ بايد استخراج شود . يك رشته گزارشگر كه درون هركدام از كاشي‌ها بافته مي‌شود، شامل محل محدوديتي است كه ارزش كاشي را مشخّص مي‌كند. رشته‌هاي گزارشگر مربوط به كاشي‌هاي مجاور به يكديگر جوش خورده ، رشته‌اي درازتر ايجاد مي‌كنند، كه از مجموعه خارج مي‌شود رشته به هم جوش خورده،پس از تقويت شدن، باكمك آنزيمهاي محدوديت بريده‌شده و اجزاي حاصل به كمك الكتروفوريزيس ژل سنجيدهمي‌شوند. سيمن مي‌گويد : " اين كار از همه جهت شبيه توالي‌سنجي DNA است ،مگر اينكه دقّت عمل خيلي كمتر است!" ؛   پاسخ- ارزش كاشي‌هاي خروجي كه خودچيدماني كرده‌اند- را مستقيما" از الگوي خطوط در ژل مي‌توان خواند.

 اين مدل فقط از چهار ورودي سود مي‌برد. محاسبات طولاني‌تر نيز به گفته سيمن با يك مرحله ساده خودچيدماني انجام مي‌شود. ولي با افزايش تعداد مراحل محاسباتي، احتمال خطا بيشتر مي‌شود. در تجربه‌اي كه در مجلّه Nature بيان شده، ميزان خطا 2 تا 5% برآورد شده است.

 سيمن خاطرنشان مي‌كند كه اين خودچيدماني الگوريتمي ، نسبت به چيدمانيهاي DNAاي كه او روي آنها كار كرده است، به صحّت بيشتري نياز دارد .دركار قبلي‌ او روي آرايه‌هاي تناوبي، يك كاشي " صحيح" با كاشي‌هاي " غلط" رقابت مي‌كرد و " لذا فراهم‌آوري شرايط كاركرد صحيح زياد سخت نبود."  او مي‌گويد : " در اين مسئله ، كاشي صحيح با كاشي‌هاي نسبتا" صحيح رقابت مي‌كند. شما در اين مسئله بايد سخت‌گيرانه‌تر از مسئله ترتيب تناوبي كار كنيد. شما بايد به تمام صحت و درستي دست يابيد و نه نصف آن! "

اريك وين ‌فري ، يك دانشيار علوم كامپيوتر و سيستمهاي محاسباتي و عصبي در موسسه فناوري كاليفرنيا، چندسال قبل براي اولين بار پيشنهاد استفاده از DNA براي تقليد كاشي‌هاي وانگ را ارائه كرده بود- مربع‌هايي با گوشه‌هاي رنگي كه وقتي طوري كنار هم چيده شوند كه گوشه‌هاي همرنگ كنار هم قرار گيرند براي انجام محاسبات قابل استفاده‌اند. سرهاي چسبنده روي كاشي‌هاي DNA معادلهاي منطقي گوشه‌هاي رنگي كاشي‌هاي وانگ اند. وين فري با ذوق زدگي از مقاله سيمن-ريف مي‌گويد: " اين اولين ظهور تجربي ايده‌هايي است كه من در تز دكترايم مطرح كردم."

 هر چند، قسمت مشكل كار حركت از نظم يك بعدي به دو و سه بعدي است، وين فري مي‌گويد : " اين كار، موجب پردازش اطلاعات بسيار پيچيده‌تري  خواهد شد"- البته در صورت عملي شدن.

ديويد هارلان‌وود، يك استاد علوم كامپيوتر در دانشگاه دلاوير معتقد است، روشن سيمن براي ساخت بيش از محاسبه مفيد است. وود مي‌گويد : " وقتي من اين مقاله را خواندم و به ساختن فكر كردم؛  نظرات شگفت‌انگيزي در مورد سيخ‌ها يا تخته‌هاي پروازكننده در فضا داشتم." ولي او فكر كرد كه: " اعمال اين تكنيك محاسباتي در 1012 مولكول مجزا از يكديگر،واقعاْ مشكل است. ولي در عوض، يك كامپيوتر الكترونيكي قوي  مي‌تواند در كمتراز يك ميكرو ثانيه مشكلات اين مقياس را در هم بكوبد."

 سيمن تأييد مي‌كند :" ما در اينجا در مورد گيگاهرتز صحبت نمي‌كنيم منظور ما 100 نانوهرتز است."  در هر صورت، سيمن مي‌گويد ، كه هدف اوليه‌اش چند محاسبه در هر ثانيه نيست، بلكه چيدماني الگوريتمي DNA براي ساخت نانوساختارهاي جديد و ذاتا" مفيد است. نانوساختارها ، درهر حال چه براي انجام محاسباتي با سرعت نور، شناسايي مولكولها در طبيعت، حذف عوامل بيماريزا از بدن، يا بهبود خواص مواد طراحي شوند، كليد  راهگشايي براي نانوتكنولوژي خواهند بود.

 و كليد ساخت نانوساختارها، شيمي است . به معناي ديگر سيمن نانوتكنولوژي را به عنوان يك زمزمه بسيار هوس‌بازانه براي شيمي در قرن آتي مي‌داند. اين ممكن است،  ولي قطعا" به همكاري فيزيكدانان ، زيست‌شناسان ، دانشمندان علوم مواد، مهندسين شيمي و برق و ديگر متخصصيني كه با هم كار خواهند كرد ، نياز خواهد بود. 
 هيث از UCLA مي‌گويد : " اكنون زمان هيجان‌انگيزي براي به انجام رساندن علوم نانوست. اين رشته با سرعت بسيار زيادي به جلو در حال حركت است." او از تصميم دولت آمريكا براي شتاب بخشيدن به تحقيقات علوم نانو به عنوان بخشي از پيشگامي ملّي نانوتكنولوژي به هيجان آمده، مي‌گويد :" تنها شكايت من اين است كه آنها چرا نام اين طرح را پيشگامي ملّي علوم و فناوري نانو نگداشته‌اند. علّت چنين نامگذاري‌اي ساده است : فناوريهاي نانويي كه از علوم نانو برمي‌خيزد، به نظر مي‌رسد نانوتكنولوژي اكثر صنايع كليدي ما را دگرگون سازد ولي در ابتداي كار به علوم نانو نياز است. " 
چهار رشته رنگي DNA براي ايجاد سه مارپيچ دوگانه به هم مرتبط مسطح موسوم به كاشي، در هم بافته شده‌اند. قسمتهاي راه‌راه، به طور تقريبي معرف " زوجهاي بازي" است . سه فلش نشانگر سه سر هستند . خط قطور قرمز، رشته گزارشگر است. سيمن از اين كاشي‌ها براي ساختن و محاسبه استفاده مي‌كند.
منبع : Chemical & Engineering News (C&EN) ، 16 اكتبر 2000

 

 


منبع:http://www.nano.ir


منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 25 فروردین 1395 ساعت: 10:41 منتشر شده است
برچسب ها : ,
نظرات(0)

ليست صفحات

تعداد صفحات : 1652

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس