تحقیق و پروژه رایگان - 361

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

بررسي آلاينده ها در سيستم هيدروليك

بازديد: 0

بررسي آلاينده ها در سيستم هيدروليك




 


 

يكي از علومي كه بيشترين كاربرد را در صنايع مختلف به خود اختصاص داده, علم هيدروليك است. البته علوم ديگري نظير شيمي, مكانيك سيالات و ترموديناميك نيز به كمك اين علم آمده و تلفيقي از آنها را به صورت ساده در يك سيستم هيدروليك مي توان مشاهده كرد.
از طرفي با توجه به نقش اساسي و مهم سيال هيدروليك (انتقال نيرو), بحث آلايندگي آن از اهميت بسيار زيادي برخوردار است. در يك سيستم هيدروليك, سيال هيدروليك با تغيير جهت نيرو و همچنين تغيير مقدار آن باعث حذف يك سري از عمليات مكانيكي در سيستم مي شود كه بعنوان مثال از حذف استفاده از دنده ها, اهرم ها و نيز حذف تنش هاي شديد اجزاي مي توان سيستم نام برد. همچنين سيال هيدروليك به دليل انتقال سريع نيرو و تا فاصله زياد, در شرايط دما و فشار بالا بازدهي بهتري خواهد داشت. 
براساس نظر كارشناسان تعميرات و نگهداري, حدود80 درصد خرابي ها در سيستم هيدروليك, نتيجه مستقيم آلودگي سيال آن است. بنابراين با انتخاب يك سيال مناسب و همچنين كنترل آلاينده ها مي توان آسيب هاي ناشي از آلاينده ها را به حداقل رساند. در اين مقاله آلاينده هاي سيستم هيدروليك به طور اجمالي معرفي شده و هر كدام به صورت جداگانه بررسي مي شود. 

حرارت بيش از اندازه (Over Heat) 
متاسفانه در بسياري از موارد, حرارت به عنوان يك آلاينده در نظر گرفته نمي شود. يكي از عوامل بوجود آمدن حرارت بيش از اندازه در سيستم مي تواند مربوط به انتخاب نادرست گريد (ISO VG) روغن هيدروليك باشد. بدين ترتيب كه چون در شرايط روانكاري هيدرو ديناميك تنها اصطكاك موجود, اصطكاك داخلي روغن در گردش است, اگر گريد مصرفي بيش از گريد توصيه شده باشد به دليل افزايش اصطكاك داخلي, دماي روغن به شدت افزايش مي يابد. بر اثر افزايش غيرعادي دماي روغن, روند اكسيداسيون از حالت تدريجي خارج شده و روغن پايه به سرعت اكسيد 
مي شود. (پس از شروع اكسيداسيون به ازاي هر15 درجه سانتيگراد افزايش دما, شدت اكسيداسيون, دو برابر مي شود) نتيجه اين امر كاهش ادتيوهاي آنتي اكسيدان و در نهايت كاهش عمر مفيد روغن خواهد بود. 
از دلايل ديگر Over Heat مي توان به انجام تماس فلز با فلز در اثر وجود اشكال فني در سيستم و برقراري شرايط روانكاري مرزي اشاره كرد كه باعث سايش مكانيكي قطعات مي شود. در برخي موارد نيز بدليل طراحي نامناسب, انتقال حرارت موثر بين سيستم و محيط انجام نشده و در شرايط آب و هوايي گرم, تاثير پذيري سيستم از محيط بسيار زياد مي شود. 
در نهايت با افزايش عدد اسيدي و تحليل ادتيوها در روغن, ميزان خوردگي و زنگ زدگي قطعات نيز افزايش مي يابد. از طرف ديگر بدليل افزايش گرانروي روغن (اكسيداسيون) جريان روغن درون سيستم كاهش يافته و بدليل افت فشار, دقت كنترل سيستم كاهش خواهد يافت. 

 

براي رفع چنين مشكلاتي در سيستم مي توان ضمن انتخاب صحيح گريد سيال هيدروليك و نيز اطمينان از طراحي مناسب, با افزايش ظرفيت تغذيه روغن و همچنين افزايش سرعت گردش آن, دماي روغن را در حد مطلوب كنترل كرد كه بنا به عقيده كارشناسان تعميرات دماي روغن در مخزن اصلي هيدروليك, نبايد از60 درجه سانتيگراد تجاوز كند. 
آلايندگي ذرات جامد (Solid Particle Contamination) 
در يك سيستم هيدروليك بدليل اينكه امكان حذف كامل ذرات جامد از سيال هيدروليك وجود ندارد, بناچار براي آلايندگي ناشي از ذرات, يك محدوده تعريف مي شود. در سيستم هاي امروزي كه داراي لقي مجاز (Clearance) بسيار كمي بوده و در فشارهاي به نسبت بالا (بيشتر از 7 bar ) كار مي كنند كنترل آلاينده هاي جامد از اهميت بسيار زيادي برخوردار است. منابع ورود ذرات جامد به سيستم مي تواند از طريق هواي ورودي به سيستم از محيط (گرد و غبار), ذرات عبوري از آب بندها, باقي ماندن ذرات درون سيستم هنگام نصب قطعات و نيز ذرات حاصل از سايش داخلي قطعات باشد. حضور اين ذرات در سيستم مي تواند سبب بوجود آمدن صدمات مكانيكي (پارگي شيلنگها و شكستن Valve ها), سايش و خراشيدگي سطوح فلزي, گرفتگي فيلترها و در نهايت ايجاد افت فشار در سيستم شود كه نتيجه اين امر كاهش ميزان توليد و افزايش هزينه هاي كلي تعميرات خواهد بود.
براي جلوگيري از ورود ذرات به سيستم, بايد تمامي سيالات, قبل از ورود به مخزن, فيلتر شده و در نواحي قرارگيري سيستم در معرض هواي محيط, فيلترهاي مناسب بكارگرفته شوند. هم چنين فلاشينگ نهايي سيستم پس از نصب قطعات (قبل از راه اندازي) و نيز بازرسي شرايط آب بندها و درپوش مخازن مركزي مي تواند مانع ورود ذرات جامد به سيستم شود. از طرفي بررسي فيلترها از نظر مش صحيح ( اندازه منافذ و تعداد) و جنس آنها با توجه به نوع عمليات, مي تواند بازدهي فيلتراسيون را در سيستم افزايش داده و با در نظر گرفتن لقي مجاز قطعات مي توان محدوده مناسبي براي آلاينده ها تعريف كرد. 

يكي از روشهاي اندازه گيري, روش اسپكتروسكوپي است كه بدليل محدوديت اين روش (عدم اندازه گيري ذرات بزرگتر از7 ميكرون), روش هاي ديگري نظير NAS و اخيراً روش ISO 4406 بكار گرفته مي شوند.
در اين روشها, با توجه به لقي مجاز قطعات و توصيه سازنده اصلي تجهيزات (OEM) يك محدوده بعنوان كد تميزي سيستم در نظر گرفته مي شود, بدين ترتيب كه بوسيله شمارش الكترونيكي ذرات با توجه به سايز آنها (در محدوده بين5,2 تا15 ميكرون) كد تميزي سيستم مشخص مي شود. بعنوان مثال سازنده ويكرز براي يك سيستم هيدروليك
كد ISO 4406 18/16/13 معادل با NAS 1638 Level 7 را بعنوان كد تميزي سيستم در نظر گرفته است كه اگر ميزان آلاينده ها از اين حد تجاوز كند, با بهبود فيلتراسيون ( يا تعويض فيلتر) و در صورت لزوم جايگزيني روغن جديد مي توان آثار مخرب آلاينده ها را به حداقل رساند. 


آلايندگي آب (Water Contamination) :
ميزان ايده آل آب در يك سيال هيدروليك, كمتر از ميزان اشباع آن (در دماي عملياتي دستگاه) است. حدود (200-300)ppm آب مي تواند بصورت محلول در سيال پايه معدني وجود داشته باشد بدون اينكه رنگ روغن تغيير كند. 
اگر ميزان آب به 500 ppm افزايش يابد, روغن كمي كدر شده و به اصطلاح ظاهر آن ابري مي شود. بالاترين ميزان مجاز آب در يك سيال هيدروليك 100 ppm بوده و اگرميزان آب از 0.1 درصد وزني تجاوز كند, بصورت‌ آب آزاد ظاهر خواهد شد. آب بدليل كاهش مقاومت فيلم روانكار باعث افزايش شدت سايش شده و در حضور فلزاتي نظير مس, شدت سايش دو برابر خواهد شد. 
از طرفي بدليل كاهش ادتيوهاي R&O , ميزان خوردگي و زنگ زدگي سطوح فلزي افزايش يافته و در حضور كاتاليزورهاي فلزي, تخريب سطوح چند برابر مي شود. همچنين بدليل انجام سريع اكسيداسيون, لجن اسيدي در سيستم ايجاد شده و راندمان فيلتراسيون كاهش مي يابد. 
بهترين روش براي اندازه گيري ميزان آب, آزمايش كارل فيشر است. براي جلوگيري از ورود آب به سيستم مي توان به مواردي نظير دقت در انبارداري صحيح, برطرف كردن نشتي از مبدلهاي حرارتي يا ورودي هاي مخزن و تعويض آب بندهاي آسيب ديده, اشاره كرد.

آلايندگي هوا (Air Contamination) :
يكي ديگر از آلاينده هايي كه در ارتباط با سيال هيدروليك مي توان به آن پرداخت, حبابهاي هواست. خروج حبابهاي درون سيال در مواقعي كه فشار اعمال شده روي سيال از فشار اشباع حلاليت هوا در آن كمتر باشد, مي تواند با شكستن و از بين رفتن ناگهاني باعث بروز حوادثي نظير كاويتاسيون شود. يكي ديگر از صدماتي كه حضور حبابهاي هوا درون روغن هيدروليك ايجاد مي كند, توليد كف (تراكم پذير) و افزايش شديد درجه حرارت بدليل كاهش حجم درون سيلندر هيدروليك است كه اين افزايش دماي ناگهاني باعث تسريع روند اكسيداسيون خواهد شد. 
براي جلوگيري از ورود هوا به سيستم مي توان با تامين هد مورد نياز پمپ از بوجود آمدن افت فشار در اريفيس ها و همچنين مقاومت در مكش و هواگيري پمپ ها جلوگيري كرد. 
در برخي موارد باز و بسته شدن سريع شير كنترل ها (ايجاد توربولنسي), تنفس كلاهك مخزن و ورودي هاي سيستم مي تواند بعنوان منابع ورود هوا به سيستم باشند كه با رفع اين عيوب, تشكيل حبابهاي هوا در سيال هيدروليك به پايين ترين ميزان ممكن خواهد رسيد.

مشكل نشتي (Leakage) 
متاسفانه در جامعه صنعتي, نشتي بعنوان يك امر معمولي در نظر گرفته شده و براي رفع آن, تلاش جدي صورت نمي گيرد. بررسي آثار نامطلوب نشتي در يك سيستم مي تواند اهميت آنرا بيش از پيش مشخص ساخته و تاثير آن را در كيفيت محصول نهايي و افزايش هزينه هاي تمام شده, نشان دهد. 
در يك سيستم هيدروليك بدليل نشتي, همواره ميزان مصرف روغن از ظرفيت واقعي مخزن بيشتر بوده و هزينه هاي مربوط به خريد روانكار افزايش مي يابد. از طرفي بدليل كاهش جريان روغن و ايجاد افت فشار, دقت كنترلي سيستم كاهش يافته و بعلت كاركرد نامنظم سيستم, مشخصات محصول نهايي (مثلاً ابعاد) بر موارد از پيش تعيين شده منطبق نخواهدبود. در ارتباط با معضل نشتي در كنار آثار مخرب زيست محيطي (ورود روغن به منابع آب و خاك), احتمال قرار گرفتن روغن در معرض سطوح داغ (دستگاههاي دايكاست و تزريق پلاستيك) و اشتعال آن وجود داشته و بروز حوادثي نظير آتش سوزي محتمل خواهد بود. 
نكته بسيار مهم ديگر در ارتباط با نشتي اين است كه تمامي آلاينده هاي ياد شده مي توانند از محل نشت روغن وارد سيستم شده و استهلاك زودرس تجهيزات و ماشين آلات را باعث شوند. بنابراين بازرسي منظم اتصالات و آب بندها و تعويض آنها در صورت لزوم مي تواند در كاركرد مطمئن ماشين آلات, موثر باشد. 
يكي ديگر از روشهاي جلوگيري از نشتي, بحث سازگاري سيال هيدروليك با الاستومرها و انتخاب مناسب سيال هيدروليك از نظر نقطه آنيلين است. 
بدين معني كه نقطه آنيلين معرف ميزان تركيبات آروماتيك در روغن بوده و اگر از ميزان توصيه شده بيشتر باشد, باعث تورم آب بندها شده و اگر كمتر از حد مجاز باشد سبب سفت شدن اتصالات و كاهش حجم آنها مي شود. 
از روش هاي موثر ديگر جلوگيري از نشتي, انتخاب صحيح آب بندها (از نظر دما, فشار و شدت جريان), تنظيم دماي سيال هيدروليك (حداقل نگه داشتن دماي سيال) و بالانس مكانيكي سيستم (در يك راستا قرار گرفتن شفت پمپ و موتور) است كه با اجراي اين روشها مي توان ميزان نشتي را به حداقل رساند. 
منابع:
- National Tribology Service (NAS)
- Oil Analysis & Lubrication Learning Center
- Hydraulic Oil Filtration System-Filtroil
- Practical Ways To Control Hydraulic System Contamination
- Lube- Tech Magazine

نويسنده: مهندس مجيد همداني

منبع : مجله نفت پارس

با تشکر ویژه از کانون دانش


 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 11:29 منتشر شده است
برچسب ها : ,
نظرات(0)

طراحي صنعتي

بازديد: 145

طراحي صنعتي




 


 

چرا طراحي صنعتي ؟

در دنياي امروز و بويژه در كشورهاي صنعتي، روند طراحي صنعتي و تمامي گرايشهاي وابسته به آن چه از نظر شيوه و چه از نظر ابزار دچار تحولاتي بس شگرف شده است. از جمله اين تغييرات ميتوان بكارگيري گسترده كامپيوتر و ابزار جانبي آن در روند طراحي صنعتي را برشمرد.

نسبت تغييراتي كه كامپيوتر در طراحي ايجاد كرده در مقايسه با روند دستي طراحي صنعتي همانند نسبت پزشكي عهد حكيم ابوعلي سينا به پزشكي مجهز به روبات عهد فعلي است.

طراحي صنعتي چيست ؟

طراحي صنعتي به عنوان يك رشته و شغل، آميخته‌اي است از علم و هنر. هر يك از دو ركن علم و هنر آنچنان جايگاه محكم و استواري در پيكره طراحي صنعتي دارند كه با حذف هر كدام، روند طراحي صنعتي به سرانجام نرسيده و نهايتاً نتيجه كار يا به سمت صنعت صِرف منحرف شده و يا به سوي هنر صرف.

با اين توصيف مي‌توان اولاً به اين نتيجه رسيد كه طراحي صنعتي به‌حق نام مناسبي براي اين رشته است، و دوم اينكه رشته‌هاي بالا كاربرد مشخصي در طراحي صنعتي دارند. به اين معنا كه طراح صنعتي الزاماً بايد تسلط و اشراف كافي به موضوعات رشته‌هاي بالا را تا حدي كه هدفش تامين گردد داشته باشد. در طراحي صنعتي هرگز يادگيري مستقل و صرف مكانيك، نقاشي، گرافيك يا غيره كمكي نمي‌كند، بلكه لازم است تا بسته به نياز و هدف مشخص، اقدام به تحقيق و گردآوري اطلاعات در زمينه مورد نياز نمود.

بنابراين ميتوان گفت كه طراحي صنعتي يك رشته جامع و تركيبي است. تخصصي كه براي كسب آن بايد از هر زمينه تخصصي، اطلاعاتي مشخص داشت.

 

تعريف طراحي صنعتي

تا به اينجا به توصيف طراحي صنعتي پرداختيم. اما تعريف طراحي صنعتي در يك كلام عبارت است از :

تعيين ويژگي‌هاي كمي و كيفي كالا به منظور توليد به روش‌هاي صنعتي

همانگونه كه طراحي اولين حلقه از زنجير توليد يك كالا مي‌باشد،‌ فرآيند طراحي صنعتي اولين حلقه از زنجير توليد صنعتي يك كالا بوده و معادله‌‌اي است جامع براي رسيدن به وضعيت مطلوب كالا از نظر عملكرد،‌ فرم، سليقه و تنوع‌طلبي و مد و هزينه.

 

گرايش‌ها و زير گروه‌هاي طراحي صنعتي

رشته طراحي صنعتي گرايش‌ها و زيرگروه‌هاي متعددي دارد كه مهمترين آنها عبارتند از :

· طراحي محصول : لوازم خانگي/ مبلمان اداري و خانگي / وسايل صوتي و تصويري/ ماشين‌هاي اداري/ نوشت‌افزار/ اسباب بازي و غيره.

· طراحي دكوراسيون :‌ شامل دكوراسيون خانگي، اداري، تجاري و غيره.

· طراحي محيطي: فضا، مبلمان و چيدمان شهري و كليه فضاهاي زير مجموعه آن نظير پاركها، نمايشگاهها، مراكز خريد، ايستگاههاي اتوبوس و تاكسي و كليه محيطهاي عمومي، تاسيسات ترافيكي و نظاير آن.

· طراحي خودرو : طراحي بدنه و نماي داخلي خودرو.

· طراحي بسته‌بندي : بسته بندي كالا و محصولات مختلف.

· طراحي اصلاحي : اصلاح خصوصيات عملكردي يا فرمي يك محصول به منظور بهبود كارايي آن.

 

سبك‌ها، الگوها و متدهاي طراحي صنعتي

در روند طراحي صنعتي نيز مانند خيلي از زمينه‌هاي ديگر الگوها و سبك‌هاي مختلفي وجود دارد كه مجموعه‌اي از ويژگي‌ها و خصوصيات از پيش تعيين شده را براي سهولت كار در اختيار طراح قرار مي‌دهد. بنابراين هر طراح صنعتي براي طراحي هر يك از موارد بالا مي‌تواند بر اساس شرايط كاري خود، از يك يا چند الگوي طراحي زير براي خلق ايده و طرح خود بهره ببرد. در اينجا به دو عنوان از اين الگوها و سبك‌ها اشاره مي‌گردد :

الگوي طراحي براي آينده :‌ طراحي كالا و محصول با استفاده از المان‌ها و نمادهاي فوق پيشرفته و بسيار مدرن و حتي تخيلي.

الگوهاي طبيعي : طراحي كالا و محصول بر اساس عملكرد و يا فرم زندگي و ويژگي‌هاي ظاهري جانوران، گياهان و طبيعت بي‌جان.

 

خصوصيات يك طراح صنعتي

با توجه به گرايش‌هاي طراحي صنعتي، ابداع، ابتكار، خلاقيت و ايده‌پردازي از پايه‌هاي اساسي كار هر طراح صنعتي مي‌باشد. پس نمي‌توان به صرف وجود محصولات و روش‌هاي فعلي از نوآوري و ابتكار دوري جست. مسلما انسان تنوع‌طلب است و با توجه به همين اصل است كه نوآوري در فرم ظاهري كالا و توليدات ضروري مينمايد و از آن مهمتر نيازهاي عمكردي انان چنان وسيع و روزافزون است كه خلاقيت و اختراع و ابتكار در كاركرد توليدات و محصولات جايگاهي بس مهمتر مي يابد. به عنوان مثال شما هيچگاه از بهترين غذا و يا لباس مورد علاقه خود به شكل پيوسته و پشت سر هم استفاده نمي‌كنيد و اين بدليل دوري از تكرار و روزمره شدن آنها مي‌باشد. به همين ترتيب پاسخ به تنوع‌طلبي استفاده‌كننده يكي ازعوامل مهم كار طراح در جهت رسيدن به طرح مطلوب است. همچنين با ارائه و تعريف روشها و سبكهاي جديدي از زندگي انسان (مثل آپارتمان نشيني، مسافرتهاي هوايي طولاني مدت، عمليات نظامي، مسابقات اسكي سرعت كه همگي الگوهايي جديد از زندگي انسان و زمينه بروز نيازهاي جديد ميباشند) ضرورتها و نيازمنديهاي جديدي در خصوص ابزار و روشها بروز ميكند كه نيازمند نگرش و ديد عميق طراح براي ارائه روشها و راه حهايي راهگشا در قالب ابزار و كالا و توليدات نوين ميباشد.

همواره در پروسه طراحي يك علت خارجي يا يك مخاطب غير از خود طراح وجود دارد كه نياز طراحي را مطرح مي‌كند. و اينكه طراح صرفاً به رفع نياز مخاطب توجه و تامل داشته باشد اصلي از اصول اوليه طراحي صنعتي ميباشد كه مخاطب مداري ناميده ميشود.

طراح با توجه به علم و هنر طراحي، محصول، محيط و يا روشي را براي مخاطب خلق ميكند كه خواسته‌هاي تعريف شده او را در جهت حصول به هدف معيني (مثلاً كسب امنيت، آرامش، سهولت استفاده، قيمت ارزان، آرامش و يا حتي لذت) مهيا سازد. طراحان صنعتي آشتي‌دهندگان صنعت، ‌هنر و اقتصاد هستند و در تمام كارخانجات و خطوط توليد دنيا در راس هرم مديريت توليد كالا و محصولات قرار دارند.

ايجاد هويت واحد براي يك كالا يا يك گروه كالايي و يا حتي تمامي كالاهاي توليدي يك شركت از ديگر وظايف طراح صنعتي است. بنابراين آنچه كه شما به عنوان هويت كالاهاي شركت‌هايي همچون سوني، بي.ام.و، آديداس، آركوپال و يا نظاير آن مي‌شناسيد، نتيجه مستقيم خلاقيت، فعاليت، طراحي و تجزيه و تحليل‌ طراحان صنعتي اين شركت‌ها مي‌باشد.

 

طراحي محصول

طراحي محصول (PRODUCT DESIGN) يكي از گرایشهای مهندسی طراحی صنعتی بوده و عبارت است از روند طراحی یک محصول و کالا به قصد تولید صنعتي.

روند طراحي محصول را ميتوان (و بلكه لازم است تا) با بکارگیری کامپیوتر به عنوان ابزار طراحی، آنالیز، نقشه کشی، حجم سازی و مدل سازی و ارائه (PRESENTATION) روند آن را تسريع و تصحيح و بهينه سازي نمود.

برخی مراحل طراحی محصول عبارتند از :

1 - تحقيقات و پژوهش هاي بازار

2 - آنالیز نمونه هاي احتمالي موجود

3 - مرحله تعيين هدف

4 - مرحله ايده پردازي و خلاقيت

5 - مرحله طراحي اوليه

6 - مرحله تعديل طراحي

7 - مرحله طراحي نهايي

8 - مرحله نمونه سازي كامپيوتري

9 - مرحله تعديل عملكردي

در روند كامپيوتري طراحي محصول میتوان هر کالایی را پیش از تولید درون کامپیوتر مشاهده و آناليز نموده و از زوایای مختلف بررسی کرد. همچنین با استفاده از توان محاسباتی کامپیوتر میتوان محاسبات مختلف مراحل طراحی و تولید را با سرعت و سهولت و دقت راهبري نمود. تكنولوژي هاي موسوم به سي . ان . سي (CNC : COMPUTER NUMERIC CONTROL) امروزه اين امكان را فراهم آورده تا فايل خروجي حاصل از طراحي قطعات صنعتي توسط نرم افزارهاي نقشه كشي و طراحي فني و مهندسي را مستقيما به ماشين ابزار سپرد و قطعه مورد نظر با دقت غير قابل رقابتي از دستگاه تحويل گرفت

برآيند با بكارگيري روند علمي و خلاقانه طراحي صنعتي آمادگي دارد تا اين دانش را براي تمامي واحدهاي توليدي ايراني بكار گرفته و افقهاي تازه اي از طراحي و توليد ايراني را براي مخاطب ايراني معرفي نمايد.

انواع زمينه هاي کاربرد طراحي كامپيوتري محصول عبارتند از :

1 - طراحي كامپيوتري لوازم خانگي

2 - طراحي كامپيوتري مبلمان خانگي؛ اداري و تجاري

3 - طراحي كامپيوتري لوازم صوتي و تصويري

4 - طراحي كامپيوتري كامپيوتر و ماشينهاي اداري

5 - طراحي كامپيوتري اسباب بازي و لوازم ورزشي

6 - طراحي كامپيوتري طلا؛ جواهر و ساعت

منبع : بلاگ فراسو

       کانون دانش


 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 11:29 منتشر شده است
نظرات(0)

بررسي آلاينده ها در سيستم هيدروليك

بازديد: 179

بررسي آلاينده ها در سيستم هيدروليك




 


 

يكي از علومي كه بيشترين كاربرد را در صنايع مختلف به خود اختصاص داده, علم هيدروليك است. البته علوم ديگري نظير شيمي, مكانيك سيالات و ترموديناميك نيز به كمك اين علم آمده و تلفيقي از آنها را به صورت ساده در يك سيستم هيدروليك مي توان مشاهده كرد.
از طرفي با توجه به نقش اساسي و مهم سيال هيدروليك (انتقال نيرو), بحث آلايندگي آن از اهميت بسيار زيادي برخوردار است. در يك سيستم هيدروليك, سيال هيدروليك با تغيير جهت نيرو و همچنين تغيير مقدار آن باعث حذف يك سري از عمليات مكانيكي در سيستم مي شود كه بعنوان مثال از حذف استفاده از دنده ها, اهرم ها و نيز حذف تنش هاي شديد اجزاي مي توان سيستم نام برد. همچنين سيال هيدروليك به دليل انتقال سريع نيرو و تا فاصله زياد, در شرايط دما و فشار بالا بازدهي بهتري خواهد داشت. 
براساس نظر كارشناسان تعميرات و نگهداري, حدود80 درصد خرابي ها در سيستم هيدروليك, نتيجه مستقيم آلودگي سيال آن است. بنابراين با انتخاب يك سيال مناسب و همچنين كنترل آلاينده ها مي توان آسيب هاي ناشي از آلاينده ها را به حداقل رساند. در اين مقاله آلاينده هاي سيستم هيدروليك به طور اجمالي معرفي شده و هر كدام به صورت جداگانه بررسي مي شود. 

حرارت بيش از اندازه (Over Heat) 
متاسفانه در بسياري از موارد, حرارت به عنوان يك آلاينده در نظر گرفته نمي شود. يكي از عوامل بوجود آمدن حرارت بيش از اندازه در سيستم مي تواند مربوط به انتخاب نادرست گريد (ISO VG) روغن هيدروليك باشد. بدين ترتيب كه چون در شرايط روانكاري هيدرو ديناميك تنها اصطكاك موجود, اصطكاك داخلي روغن در گردش است, اگر گريد مصرفي بيش از گريد توصيه شده باشد به دليل افزايش اصطكاك داخلي, دماي روغن به شدت افزايش مي يابد. بر اثر افزايش غيرعادي دماي روغن, روند اكسيداسيون از حالت تدريجي خارج شده و روغن پايه به سرعت اكسيد 
مي شود. (پس از شروع اكسيداسيون به ازاي هر15 درجه سانتيگراد افزايش دما, شدت اكسيداسيون, دو برابر مي شود) نتيجه اين امر كاهش ادتيوهاي آنتي اكسيدان و در نهايت كاهش عمر مفيد روغن خواهد بود. 
از دلايل ديگر Over Heat مي توان به انجام تماس فلز با فلز در اثر وجود اشكال فني در سيستم و برقراري شرايط روانكاري مرزي اشاره كرد كه باعث سايش مكانيكي قطعات مي شود. در برخي موارد نيز بدليل طراحي نامناسب, انتقال حرارت موثر بين سيستم و محيط انجام نشده و در شرايط آب و هوايي گرم, تاثير پذيري سيستم از محيط بسيار زياد مي شود. 
در نهايت با افزايش عدد اسيدي و تحليل ادتيوها در روغن, ميزان خوردگي و زنگ زدگي قطعات نيز افزايش مي يابد. از طرف ديگر بدليل افزايش گرانروي روغن (اكسيداسيون) جريان روغن درون سيستم كاهش يافته و بدليل افت فشار, دقت كنترل سيستم كاهش خواهد يافت. 

 

براي رفع چنين مشكلاتي در سيستم مي توان ضمن انتخاب صحيح گريد سيال هيدروليك و نيز اطمينان از طراحي مناسب, با افزايش ظرفيت تغذيه روغن و همچنين افزايش سرعت گردش آن, دماي روغن را در حد مطلوب كنترل كرد كه بنا به عقيده كارشناسان تعميرات دماي روغن در مخزن اصلي هيدروليك, نبايد از60 درجه سانتيگراد تجاوز كند. 
آلايندگي ذرات جامد (Solid Particle Contamination) 
در يك سيستم هيدروليك بدليل اينكه امكان حذف كامل ذرات جامد از سيال هيدروليك وجود ندارد, بناچار براي آلايندگي ناشي از ذرات, يك محدوده تعريف مي شود. در سيستم هاي امروزي كه داراي لقي مجاز (Clearance) بسيار كمي بوده و در فشارهاي به نسبت بالا (بيشتر از 7 bar ) كار مي كنند كنترل آلاينده هاي جامد از اهميت بسيار زيادي برخوردار است. منابع ورود ذرات جامد به سيستم مي تواند از طريق هواي ورودي به سيستم از محيط (گرد و غبار), ذرات عبوري از آب بندها, باقي ماندن ذرات درون سيستم هنگام نصب قطعات و نيز ذرات حاصل از سايش داخلي قطعات باشد. حضور اين ذرات در سيستم مي تواند سبب بوجود آمدن صدمات مكانيكي (پارگي شيلنگها و شكستن Valve ها), سايش و خراشيدگي سطوح فلزي, گرفتگي فيلترها و در نهايت ايجاد افت فشار در سيستم شود كه نتيجه اين امر كاهش ميزان توليد و افزايش هزينه هاي كلي تعميرات خواهد بود.
براي جلوگيري از ورود ذرات به سيستم, بايد تمامي سيالات, قبل از ورود به مخزن, فيلتر شده و در نواحي قرارگيري سيستم در معرض هواي محيط, فيلترهاي مناسب بكارگرفته شوند. هم چنين فلاشينگ نهايي سيستم پس از نصب قطعات (قبل از راه اندازي) و نيز بازرسي شرايط آب بندها و درپوش مخازن مركزي مي تواند مانع ورود ذرات جامد به سيستم شود. از طرفي بررسي فيلترها از نظر مش صحيح ( اندازه منافذ و تعداد) و جنس آنها با توجه به نوع عمليات, مي تواند بازدهي فيلتراسيون را در سيستم افزايش داده و با در نظر گرفتن لقي مجاز قطعات مي توان محدوده مناسبي براي آلاينده ها تعريف كرد. 

يكي از روشهاي اندازه گيري, روش اسپكتروسكوپي است كه بدليل محدوديت اين روش (عدم اندازه گيري ذرات بزرگتر از7 ميكرون), روش هاي ديگري نظير NAS و اخيراً روش ISO 4406 بكار گرفته مي شوند.
در اين روشها, با توجه به لقي مجاز قطعات و توصيه سازنده اصلي تجهيزات (OEM) يك محدوده بعنوان كد تميزي سيستم در نظر گرفته مي شود, بدين ترتيب كه بوسيله شمارش الكترونيكي ذرات با توجه به سايز آنها (در محدوده بين5,2 تا15 ميكرون) كد تميزي سيستم مشخص مي شود. بعنوان مثال سازنده ويكرز براي يك سيستم هيدروليك
كد ISO 4406 18/16/13 معادل با NAS 1638 Level 7 را بعنوان كد تميزي سيستم در نظر گرفته است كه اگر ميزان آلاينده ها از اين حد تجاوز كند, با بهبود فيلتراسيون ( يا تعويض فيلتر) و در صورت لزوم جايگزيني روغن جديد مي توان آثار مخرب آلاينده ها را به حداقل رساند. 


آلايندگي آب (Water Contamination) :
ميزان ايده آل آب در يك سيال هيدروليك, كمتر از ميزان اشباع آن (در دماي عملياتي دستگاه) است. حدود (200-300)ppm آب مي تواند بصورت محلول در سيال پايه معدني وجود داشته باشد بدون اينكه رنگ روغن تغيير كند. 
اگر ميزان آب به 500 ppm افزايش يابد, روغن كمي كدر شده و به اصطلاح ظاهر آن ابري مي شود. بالاترين ميزان مجاز آب در يك سيال هيدروليك 100 ppm بوده و اگرميزان آب از 0.1 درصد وزني تجاوز كند, بصورت‌ آب آزاد ظاهر خواهد شد. آب بدليل كاهش مقاومت فيلم روانكار باعث افزايش شدت سايش شده و در حضور فلزاتي نظير مس, شدت سايش دو برابر خواهد شد. 
از طرفي بدليل كاهش ادتيوهاي R&O , ميزان خوردگي و زنگ زدگي سطوح فلزي افزايش يافته و در حضور كاتاليزورهاي فلزي, تخريب سطوح چند برابر مي شود. همچنين بدليل انجام سريع اكسيداسيون, لجن اسيدي در سيستم ايجاد شده و راندمان فيلتراسيون كاهش مي يابد. 
بهترين روش براي اندازه گيري ميزان آب, آزمايش كارل فيشر است. براي جلوگيري از ورود آب به سيستم مي توان به مواردي نظير دقت در انبارداري صحيح, برطرف كردن نشتي از مبدلهاي حرارتي يا ورودي هاي مخزن و تعويض آب بندهاي آسيب ديده, اشاره كرد.

آلايندگي هوا (Air Contamination) :
يكي ديگر از آلاينده هايي كه در ارتباط با سيال هيدروليك مي توان به آن پرداخت, حبابهاي هواست. خروج حبابهاي درون سيال در مواقعي كه فشار اعمال شده روي سيال از فشار اشباع حلاليت هوا در آن كمتر باشد, مي تواند با شكستن و از بين رفتن ناگهاني باعث بروز حوادثي نظير كاويتاسيون شود. يكي ديگر از صدماتي كه حضور حبابهاي هوا درون روغن هيدروليك ايجاد مي كند, توليد كف (تراكم پذير) و افزايش شديد درجه حرارت بدليل كاهش حجم درون سيلندر هيدروليك است كه اين افزايش دماي ناگهاني باعث تسريع روند اكسيداسيون خواهد شد. 
براي جلوگيري از ورود هوا به سيستم مي توان با تامين هد مورد نياز پمپ از بوجود آمدن افت فشار در اريفيس ها و همچنين مقاومت در مكش و هواگيري پمپ ها جلوگيري كرد. 
در برخي موارد باز و بسته شدن سريع شير كنترل ها (ايجاد توربولنسي), تنفس كلاهك مخزن و ورودي هاي سيستم مي تواند بعنوان منابع ورود هوا به سيستم باشند كه با رفع اين عيوب, تشكيل حبابهاي هوا در سيال هيدروليك به پايين ترين ميزان ممكن خواهد رسيد.

مشكل نشتي (Leakage) 
متاسفانه در جامعه صنعتي, نشتي بعنوان يك امر معمولي در نظر گرفته شده و براي رفع آن, تلاش جدي صورت نمي گيرد. بررسي آثار نامطلوب نشتي در يك سيستم مي تواند اهميت آنرا بيش از پيش مشخص ساخته و تاثير آن را در كيفيت محصول نهايي و افزايش هزينه هاي تمام شده, نشان دهد. 
در يك سيستم هيدروليك بدليل نشتي, همواره ميزان مصرف روغن از ظرفيت واقعي مخزن بيشتر بوده و هزينه هاي مربوط به خريد روانكار افزايش مي يابد. از طرفي بدليل كاهش جريان روغن و ايجاد افت فشار, دقت كنترلي سيستم كاهش يافته و بعلت كاركرد نامنظم سيستم, مشخصات محصول نهايي (مثلاً ابعاد) بر موارد از پيش تعيين شده منطبق نخواهدبود. در ارتباط با معضل نشتي در كنار آثار مخرب زيست محيطي (ورود روغن به منابع آب و خاك), احتمال قرار گرفتن روغن در معرض سطوح داغ (دستگاههاي دايكاست و تزريق پلاستيك) و اشتعال آن وجود داشته و بروز حوادثي نظير آتش سوزي محتمل خواهد بود. 
نكته بسيار مهم ديگر در ارتباط با نشتي اين است كه تمامي آلاينده هاي ياد شده مي توانند از محل نشت روغن وارد سيستم شده و استهلاك زودرس تجهيزات و ماشين آلات را باعث شوند. بنابراين بازرسي منظم اتصالات و آب بندها و تعويض آنها در صورت لزوم مي تواند در كاركرد مطمئن ماشين آلات, موثر باشد. 
يكي ديگر از روشهاي جلوگيري از نشتي, بحث سازگاري سيال هيدروليك با الاستومرها و انتخاب مناسب سيال هيدروليك از نظر نقطه آنيلين است. 
بدين معني كه نقطه آنيلين معرف ميزان تركيبات آروماتيك در روغن بوده و اگر از ميزان توصيه شده بيشتر باشد, باعث تورم آب بندها شده و اگر كمتر از حد مجاز باشد سبب سفت شدن اتصالات و كاهش حجم آنها مي شود. 
از روش هاي موثر ديگر جلوگيري از نشتي, انتخاب صحيح آب بندها (از نظر دما, فشار و شدت جريان), تنظيم دماي سيال هيدروليك (حداقل نگه داشتن دماي سيال) و بالانس مكانيكي سيستم (در يك راستا قرار گرفتن شفت پمپ و موتور) است كه با اجراي اين روشها مي توان ميزان نشتي را به حداقل رساند. 
منابع:
- National Tribology Service (NAS)
- Oil Analysis & Lubrication Learning Center
- Hydraulic Oil Filtration System-Filtroil
- Practical Ways To Control Hydraulic System Contamination
- Lube- Tech Magazine

نويسنده: مهندس مجيد همداني

منبع : مجله نفت پارس

با تشکر ویژه از کانون دانش


 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 11:28 منتشر شده است
برچسب ها : ,
نظرات(0)

نظريه جنبشي گازها

بازديد: 170

نظريه جنبشي گازها




 


قوانين مكانيك را مي‌توان بطور آماري در دو سطح مختلف به مجموعه‌اي از اتمها اعمال كرد در سطحي كه نظريه جنبشي گازها ناميده مي‌شود. به طريقي كم و بيش فيزيكي و با استفاده از روشهاي نسبتا ساده ميانگين گيري رياضي ، عمل مي‌كنيم. براي فهم نظريه جنبشي گاز را در فشار ، دما ، گرماي ويژه و انرژي داخلي اين روش را كه در سطح بكار برده مي‌شود. 


نگاه اجمالي 
در ترموديناميك فقط با متغيرهاي ماكروسكوپيك ، مانند فشار و دما و حجم سر و كار داريم. قوانين اصلي ترموديناميك‌ها بر حسب چنين كميتهايي بيان مي‌شوند. ابدا درباره اين امر كه ماده از اتمها ساخته شده است صحبتي نمي‌كنند. ليكن مكانيك آماري ، كه با همان حيطه‌اي از علم سر و كار دارد كه ترموديناميك از آن بحث مي‌كند و وجود اتمها را از پيش مفروض مي‌داند. قوانين اصلي مكانيك آماري حامي قوانين مكانيك‌اند كه در حدود اتمهاي تشكيل دهنده سيسنم بكار مي‌روند. 

تاريخچه 
نظريه جنبشي توسط رابرت بويل (Rabert Boyle) (1627 – 1691) ، دانيل بونولي (1700 – 1782) ، جيمز ژول (1818 – 1889) ، كرونيگ (1822 – 1874) ، رودولف كلاوسيوس (1822 – 1888) و كلرك ماكسول ( 1831 – 1879 ) و عده‌اي ديگر تكوين يافته است. در اينجا نظريه جنبشي را فقط در مورد گازها بكار مي‌بريم، زيرا برهم كنش‌هاي بين اتمها ، در گازها به مراتب متغيرترند تا در مايعات. و اين امر مشكلات رياضي را خيلي آسانتر مي‌كند.

در سطح ديگر مي‌توان قوانين مكانيك را بطور آماري و با استفاده از روشهايي كه صوري‌تر و انتزاعي‌تر از روشهاي نظريه جنبشي هستند بكار برد. اين رهيافت كه توسط جي ويلارد گيبس (J.willard Gibbs) و لودويگ بولتز ماني (Ludwig Boltz manni) (1844 – 1906) و ديگران تكامل يافته است، مكانيك آماري ناميده مي‌شود، كه نظريه جنبشي را به عنوان يكي از شاخه‌هاي فرعي در بر مي‌گيرد. با استفاده از اين روشها مي‌توان قوانين ترموديناميك را به دست آورد. بدين ترتيب معلوم مي‌شود كه ترموديناميك شاخه‌اي از علم مكانيك است. 

محاسبه فشار بر پايه نظريه جنبشي 
فشار يك گاز ايده‌آل را با استفاده از نظريه جنبشي محاسبه مي‌كنند. براي ساده كردن مطلب ، گازي را در يك ظرف مكعب شكل با ديواره‌هاي كاملا كشسان در نظر مي‌گيريم. فرض مي‌كنيم طول هر ضلع مكعب L باشد. سطحهاي عمود بر محور X را كه مساحت هر كدام e2 است. A1 و A2 مي‌ناميم. مولكولي را در نظر مي‌گيريم كه داراي سرعت V باشد. سرعت V را مي‌توان در راستاي يالهاي مولفه‌هاي Vx و Vy و Vz تجزيه كرد. اگر اين ذره با A1 برخورد كند در بازگشت مولفه X سرعت آن معكوس مي شود. اين برخورد اثري رو ي مولفه Vy و يا Vy ندارد در نتيجه متغير اندازه حركت عبارت خواهد بود : 

(m Vx - m Vx) = 2 m Vx - )= اندازه حركت اوليه – اندازه حركت نهايي 

كه بر A1 عمود است. بنابراين اندازه حركتي e به A1 داده مي‌شود برابر با m Vx2 خواهد بود زيرا اندازه حركت كل پايسته است.

زمان لازم براي طي كردن مكعب برابر خواهد بود با Vx/L. در A2 دوباره مولفه y سرعت معكوس مي‌شود و ذره به طرف A1 باز مي‌گردد. با اين فرض كه در اين ميان برخوردي صورت نمي‌گيرد مدت رفت و برگشت برابر با 2 e Vx خواهد بود. به طوري كه آهنگ انتقال اندازه حركت از ذره به A1 عبارت است: mVx2/e = Vx/2e . 2 mVx ، براي به دست آوردن نيروي كل وارد بر سطح A1 ، يعني آهنگ انتقال اندازه حركتي از طرف تمام مولكولهاي گاز به A1 داده مي‌شود. 

(P = M/e(Vx12 + Vx22 + Vx32 


P = 1/2eV2


تعبير دما از ديدگاه نظريه جنبشي 
با توجه به فرمول RT 2/3 = 1/2 MV2 يعني انرژي كل انتقال هر مول از مولكولهاي يك گاز ايده‌آل ، با دما متناسب است. مي‌توان گفت كه اين نتيجه با توجه به معادله بالا براي جور در آمدن نظريه جنبشي با معادله حالت يك گاز ايده‌آل لازم است. و يا اينكه مي‌توان معادله بالا را به عنوان تعريفي از دما بر پايه نظريه جنبشي يا بر مبناي ميكروسكوبيك در نظر گرفت. هر دو مورد بينشي از مفهوم دماي گاز به ما مي‌دهد. دماي يك گاز مربوط است به انرژي جنبشي انتقال كل نسبت به مركز جرم گاز اندازه گيري مي‌شود. انرژي جنبشي مربوط به حركت مركز جرم گاز ربطي به دماي گاز ندارد.

حركت كاتوره‌اي را به عنوان بخشي از تعريف آماري يك گاز ايده‌آل در نظر گرفت. V2 را بر اين اساس مي‌توان محاسبه كرد. در يك توزيع كاتوره‌اي سرعتهاي مولكولي ، مركز جرم در حال سكون خواهد بود. بنابراين ما بايد چارچوب مرجعي را بكار ببريم كه در آن مركز جرم گاز در حال سكون باشد. در چارچوبهاي ديگر ، سرعت هر يك از مولكولها به اندازه U (سرعت مركز جرم در آن چارچوب) از سرعت آنها در چارچوب مركز جرم بيشتر است. در اينصورت حركتها ديگر كتره‌اي نخواهد بود و براي V2 مقادير متفاوتي بدست مي‌آيد. پس دماي گاز داخل يك ظرف در يك قطار متحرك افزايش مي‌يابد. مي‌دانيم كه M V2 1/2 ميانگين انرژي جنبشي انتقالي هر مولكول است. اين كميت در يك دماي معين كه در اين مورد صفر درجه سلسيوس است، براي همه گازها مقدار تقريبا يكساني دارد. پس نتيجه مي‌گيريم كه در دماي T ، نسبت جذر ميانگين مربعي سرعتهاي مولكولهاي دو گاز مختلف مساوي است با ريشه دماي عكس نسبت به مربعهاي آنها.



T=2/3k m1 V12/2= 2/3k m2 V22/2


مسافت آزاد ميانگين 
در فاصله برخوردهاي پي‌درپي ، هر مولكول از گاز با سرعت ثابتي در طول يك خط راست حركت مي‌كند. فاصله متوسط بين اين برخوردهاي پي‌درپي را مسافت آزاد ميانگين مي‌نامند. اگر مولكولها به شكل نقطه بودند، اصلا با هم برخورد نمي‌كردند. و مسافت آزاد ميانگين بينهايت مي‌شد. اما مولكولها نقطه‌اي نيستند و بدين جهت برخوردهايي روي مي‌دهد. اگر تعداد مولكولها آنقدر زياد بود كه مي‌توانستند فضايي را كه در اختيار دارند كاملا پر كنند و ديگر جايي براي حركت انتقالي آنها باقي نمي‌ماند. آن وقت مسافت آزاد ميانگين صفر مي‌شد. بنابراين مسافت آزاد ميانگين بستگي دارد به اندازه مولكولها و تعداد واحد آنها در واحد حجم. و به قطر d و مولكولهاي گاز به صورت كروي هستند در اين صورت مقطع براي برخورد برابر با лd2 خواهد بود.

مولكولي با قطر 2d را در نظر مي‌گيريم كه با سرعت V در داخل گازي از ذرات نقطه‌اي هم ارز حركت مي‌كند. اين مولكول در مدت t استوانه‌اي با سطح مقطع лd2 و طول Vt را مي‌روبد. اگر nv تعداد مولكولها در واحد حجم باشد استوانه شامل (лd2 Vt ) nv ذره خواهد بود. مسافت آزاد ميانگين ، L ، فاصله متوسط بين دو برخورد پي‌درپي است بنابراين ، L ، عبارت است از كل مسافتي كه مولكول در مدت t مي‌پيمايد. (Vt) تقسيم بر تعداد برخوردهايي كه در اين مدت انجام مي‌دهد. يعني 

I = Vt/πd2nv =1/√2πnd2


I=1/√2πnd2

اين ميانگين بر مبناي تصويري است كه در آن يك مولكول با هدفهاي ساكن برخورد مي‌كند. در واقع ، برخوردهاي مولكول با هدف دماي متحرك انجام مي‌گيرد در نتيجه تعداد برخورد دما از اين مقدار بيشتر است. 

توزيع سرعتهاي مولكولي 
با توجه به سرعت جذر ميانگين مربعي مولكولهاي گاز ، اما گستره سرعتهاي تك‌تك مولكولها بسيار وسيع است. بطوري كه براي هر گازي منحني‌‌اي از سرعتها مولكولي وجود دارد كه به دما وابسته است. اگر سرعتهاي تمام مولكولهاي يك گاز يكسان باشند اين وضعيت نمي‌تواند مدت زياد دوام بياورد. زيرا سرعتهاي مولكولي به علت برخوردها تغيير خواهند كرد. با وجود اين انتظار نداريم كه سرعت تعداد زيادي از مولكولها بسيار كمتر از V‌rms (يعني نزديك صفر) يا بسيار بيشتر از Vrms ، زيرا وجود چنين سرعتهايي مستلزم آن است كه يك رشته برخوردهايي نامحتمل و موجي صورت بگيرد. مسئله محتملترين توزيع سرعتها در مورد تعداد زيادي از مولكولهاي يك گاز را ابتدا كلوك ماكسول حل كرد. قانوني كه او ارائه كرد در مورد نمونه‌اي از گاز كه N مولكول را شامل مي‌شد چنين است : 

N(V)=4πN(m/2πKt)3/2V2e-mv2/2kt

در اين معادله N(V)dV تعداد مولكولهايي است كه سرعت بين V و V+3v است، T دماي مطلق ، K ثابت بولتزمن ، m جرم هر مولكول است. تعداد كل مولكولهاي گاز (N) را ، با جمع كردن (يعني انتگرال‌گيري) تعداد موجود در هر بازه ديفرانسيلي سرعت از صفر تا بينهايت به دست مي‌آيد. واحد (N(V مي‌تواند مثلا مولكول برا سانتيمتر بر ثانيه باشد. 

N =∫∞0N(V)dv


توزيع سرعتهاي مولكولي در مايعات 
توزيع سرعتهاي مولكولي در مايعات شبيه گاز است. اما بعضي از مولكولهاي مايع (آنهايي كه سريعترند) مي‌توانند در دماهايي كاملا پايينتر از نقطه جوش عادي از سطح مايع بگريزند. (يعني تبخير شوند). فقط اين مولكولها هستند كه مي‌توانند بر جاذبه مولكولهاي سطح فائق آيند. و در اثر تبخير فرار كنند. بنابراين انرژي جنبشي ميانگين مولكولهاي باقيمانده نيز كاهش مي‌يابد در نتيجه دماي مايع پايين مي‌آيد. اين امر روشن مي‌كند كه چرا تبخير فرايند سرمايشي است. 

مثال واقعي در مورد توزيع سرعتهاي مولكولي 
با توجه به فرمول N(V)= Σ410N(M/2πkT)3/2 توزيع سرعتهاي مولكولي هم به جرم مولكول و هم به دما بستگي دارد هرچه جرم كمتر باشد نسبت مولكولهاي سريع در يك دماي معين بيشتر است. بنابراين احتمال اينكه هيدروژن در ارتفاعات زياد از جو فرار كند بيشتر است، تا اكسيژن و ازت. كره ماه داراي جو رقيقي است. براي آنكه مولكولهاي اين جو احتمال زيادي براي فرار از كشش گرانشي ضعيف ماه ، حتي در دماهاي پايين آنجا نداشته باشند، انتظار مي‌رود كه اين مولكولها يا اتمها متعلق به عناصر سنگينتر باشند. طبق شواهدي ، در اين جو گازهاي بي اثر سنگين مانند كريپتون و گزنون وجود دارند كه براثر واپاشي پرتوزا در تاريخ گذشته ماه توليد شده‌اند. فشار جو ماه در حدود 10 برابر فشار جو زمين است. 

توزيع ماكسولي 
ماكسول قانون توزيع سرعتهاي مولكولي را در سال 1859 ميلادي به دست آورد. در آن زمان بررسي اين قانون به كمك اندازه گيري مستقيم ممكن نبود و در حقيقت تا سال 1920 كه اولين كوشش جدي در اين راه توسط اشترن (Stern) به عمل آمد، هيچ اقدامي صورت نگرفته بود. افراد مختلفي تكنيكهاي اين كار را به سرعت بهبود بخشيدند. تا اينكه در سال 1955 يك بررسي تجربي بسيار دقيق در تائيد اين قانون (در مورد مولكولهاي گاز توسط ميلر (Miller) و كاش (Kusch) از دانشگاه كلمبيا صورت گرفت.

اسبابي كه اين دو نفر بكار بردند در مجموعه‌‌اي از آزمايشها مقداري تاليوم در كوره قرار مي‌دادند و ديواره‌هاي كوره O را تا دماي يكنواخت 80±4K گرم كردند. در اين دما تاليوم بخار مي‌شود و با فشار 3.2x10-3 ميليمتر جيوه ، كوره را پر مي‌كند. بعضي از مولكولهاي بخار تاليوم از شكاف s به فضاي كاملا تخليه شده خارج كوره فرار مي‌كند و روي استوانه چرخان R مي‌افتند در اين صورت استوانه كه طولش L است تعدادي شيار به صورت مورب تعبيه شده كه فقط يكي از آنها را مي‌توان ديد. به ازاي يك سرعت زاويه‌اي معين استوانه (W) فقط مولكولهايي كه داراي سرعت كاملا مشخص V هستند مي‌توانند بدون برخورد با ديواره‌ها از شيارها عبور كنند. سرعت V را مي‌توان از رابطه زير بدست آورد: 

V=LW/q و L/V= φ/W = زمان عبور مولكول از شيار 

 φ : تغيير مكان زاويه‌اي بين ورودي و خروجي يك شيار مورب است. استوانه چرخان يك سرعت گزين است، سرعت انتخاب شده با سرعت زاويه‌اي (قابل كنترل) W متناسب است. 

نقص توزيع سرعت ماكسولي با نظريه جنبشي 
اگرچه توزيع ماكسولي سرعت براي گازها در شرايط عادي سازگاري بسيار خوبي با مشاهدات دارد. ولي در چگاليهاي بالا ، كه فرضهاي اساسي نظريه جنبشي كلاسيك صادق نيستند. اين سازگاري نيز به هم مي‌خورد. در اين شرايط بايد از توزيعهاي سرعت مبتني بر اصول مكانيك كوانتومي ، يعني توزيع فرمي - ديراك (Fermi Dirac) بوز – انيشتين (Bose Einstein) استفاده كرد. اين توزيعهاي كوانتمي در ناحيه كلاسيك ( چگالي كم ) با توزيع ماكسولي توافق نزديك دارند و در جايي كه توزيع كلاسيك با شكست مواجه مي‌شود با نتايج تجربي سازگارند. بنابراين در كاربرد توزيع ماكسولي محدوديتهايي وجود دارد. همانگونه كه در واقع براي هر نظريه‌اي چنين است. 
.

منبع: http://www.cloudysky.ir/data/data0121.php

هوپا

 


 





منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 11:27 منتشر شده است
برچسب ها : ,
نظرات(0)

طرز كار راكت هاي فضايي

بازديد: 155

طرز كار راكت هاي فضايي




 



ترجمه: محمد ش. محمدي

 

 

 

 

مقدمه:
يكي  از عجيب ترين كشفيات انسان دسترسي به فضا است كه پيچيدگي و مشكلات خاص خود را دارد. راه يابي به فضا پيچيده است، چرا كه بايد با بسياري از مشكلات روبرو شد. مثلا:

 

- وجود خلا در فضا

 

- مشكلات گرما و حرارت

 

- مشكل ورود مجدد به زمين

 

- مكانيك مدارها

 

- ذرات و باقي مانده هاي فضا

 

- تابش هاي كيهاني و خورشيدي

 

- طراحي امكانات براي ثابت نگه داشتن اشيا در بي وزني

 

ولي بزرگترين مشكل ايجاد انرژي لازم براي بالا بردن فضاپيما از زمين است كه براي درك اين موضوع بايد به بررسي طرز كار موتورهاي موشك پرداخت.

 

در يك ديدگاه ساده، مي توان موتورهاي موشك را به آساني و با هزينه اي نسبتا كم طراحي كرد و حتي آن را به پرواز درآورد اما اگر بخواهيم مسئله را در سطح كلان بررسي كنيم با مشكلات و پيچيدگي هاي بسياري مواجه هستيم و اين موتورهاي موشك (و به خصوص سيستم سوخت آن ها) آنقدر پيچيده است كه تا به حال تنها سه كشور توانسته اند با استفاده از اين فناوري انسان را در مدار زمين قرار دهند.

 

در اين مقاله ما موتورهاي موشك هاي فضايي را مورد بررسي قرار مي دهيم تا با طرز كار و پيچيدگي هاي آن ها آشنا شويم.

 

 

 

 

نكات پايه اي:

 

عموما وقتي كسي درباره موتورها فكر مي كند، خود به خود مطالبي درباره چرخش برايش تداعي مي شود.براي مثال حركت متناوب پيستون در موتور بنزيني كه انرژي چرخشي براي به حركت در آوردن چرخ ها را توليد مي كند. و يا موتور الكتريكي كه با توليد ميدان الكتريكي كه با توليد ميدان مغناطيسي نيروي چرخشي براي پنكه يا سي دي رام توليد مي كنند. موتور بخار هم به طور مشابه كار مي كنند.

 

ولي موتور موشك از لحاظ ساختار متفاوت است. موتور موشك ها موتورهاي واكنشي هستند.اساس كار موتور موشك برپايه ي قانون معروف نيوتون است كه مي گويد: "براي هر كنش واكنشي وجود دارد به مقدار مساوي ولي درجهت مخالف آن". موتور موشك نيز جرم را در يك جهت پرتاب مي كند و از واكنش آن در جهت مخالف سود مي برد.

 

البته تصور اين اصل (پرتاب جرم و سود بردن از واكنش) ممكن است در ابتدا كمي عجيب به نظر بيايد، چرا كه در عمل بسيار متفاوت مي نماياند. انفجار، صدا و فشار چيزهايي است كه در ظاهر باعث حركت موشك مي شود و نه "پرتاب جرم".

 

 

 

 

بگذاريد تا با بيان چند مثال تصويري بهتر از واقعيت را روشن كنم:

 

 

● اگر تا به حال با اسلحه ي(به خصوص سايز بزرگ آن) shotgun شليك كرده باشيد،  متوجه مي شويد كه ضربه ي بسيار قوي اي، با نيروي بسيار زياد به شانه شما وارد مي كند.

 

يك اسلحه مقدار 1 انس فلز را به يك جهت و با سرعت 700 مايل در ساعت شليك مي كند و در واكنش شما را به عقب حركت مي دهد.

 

 

 

 

● اگر تا به حال شير آتش نشاني را ديده باشيد، متوجه مي شويد كه براي نگه داشتن آن بايد نيروي بسيار زيادي را صرف كنيد (اگر دقت كرده باشيد گاهي 2 يا 3 آتش نشان يك شير را نگه مي دارند) كه در اين جا شير آتش نشاني مثل موتور موشك عمل مي كند.

 

شير آتش نشاني، آب را در يك جهت پرتاب ميكند و آتش نشان ها از نيرو و وزن خود استفاده مي كنند تا در برابر واكنش  آن مقاومت كنند. اگر آن ها اجازه بدهند تا شير رها شود، شير به اين طرف و آن طرف پرتاب مي شود.

 

حال اگر آتش نشان ها روي يك اسكيت برد ايستاده باشند شير آتش فشاني آن ها را با سرعت زيادي به عقب مي راند.

 

 

 

 

● اگر يك بادكنك را باد كنيد و آن را رها كنيد، بادكنك  به پرواز در مي آيد، تا وقتي كه هواي داخل آن به طور كامل خالي شود. پس مي توان گفت كه شما يكم موتور موشك ساخته ايد. در اين جا چيزي كه به بيرون پرتاب مي شود مولكول هاي هواي درون بادكنك هستند.

 

بسياري از مردم فكر مي كنند كه مولكول هاي هوا اهميتي ندارند، در حالي كه اينطور نيست. هنگامي كه شما به آن ها اجازه مي دهيد تا از دريچه بادكنك به بيرون پرتاب شوند، بر اثر واكنش به وجود آمده بادكنك به جهت مخالف پرتاب مي شود.

 

 

 

 

در ادامه براي درك بهتر موضوع، به مثالي دقيق تر اشاره مي كنم:

 

 

 

 

● سناريوي توپ بيسبال در فضا:

 

شرايط زير را تصور كنيد،

 

مثلا شما لباس فضانوردان را پوشيده ايد و در فضا در كنار فضاپيما معلق مانده ايد و  چندين توپ بيسبال در دست داريد. حال اگر شما توپ بيسبال را پرتاب كنيد، واكنش آن بدن شما را به جهت مخالف توپ حركت مي دهد.

 

سرعت شما پس از پرتاب توپ به وزن توپ و شتاب وارده بستگي دارد. همانطور كه مي دانيم حاصلضرب جرم در شتاب برابر نيرو است، يعني:

 

F=m.a

 

همچنين ميدانيم كه هر نيرويي كه شما به توپ وارد كنيد، توپ نيز نيرويي مساوي ولي در جهت مخالف به بدن شما وارد ميكند كه همان واكنش است. پس مي توان گفت:

 

m.a=m.a

 

حال فرض مي كنيم كه توپ بيسبال 1 كيلو گرم وزن داشته باشد و وزن شما و لباس فضايي هم 100 كيلوگرم باشد. پس با اين حساب اگر شما توپ بيسبال را با سرعت 21 متر در ساعت پرتاب كنيد. يعني شما با دست خود به يك توپ بيسبال 1 كيلو گرمي، شتابي وارد كرده ايد كه سرعت 21 متر در ساعت گرفته است. واكنش آن روي بدن شما تاثير مي گذارد، ولي وزن بدن شما 100 برابر توپ بيسبال است. پس بدن شما با 100/1 سرعت توپ بيسبال (يا 0.21 متر بر ساعت) به عقب حركت مي كند.

 

حال اگر شما مي خواهيد از توپ بيسبال خود قدرت بيش تري بگيريد، شما دو انتخاب داريد: افزايش جرم يا افزايش شتاب وارده

 

شما مي توانيد يا يك توپ سنگين تر پرتاب كنيد و يا اينكه شما مي توانيد توپ بيسبال را سريع تر پرتاب كنيد (شتاب آن را افزايش دهيد)، و اين دو تنها كارهايي است كه مي توانيد انجام دهيد.

 

 

 

 

 

 

 

يك موتور موشك نيز به طور كلي جرم را در قالب گازهاي پرفشار پرتاب مي كند؛ موتور گاز را در يك جهت به بيرون پرتاب مي كند تا از واكنش آن در جهت مخالف سود ببرد. اين جرم از مقدار سوختي كه در موتور موشك مي سوزد بدست مي آيد.

 

عمليات سوختن به سوخت شتاب مي دهد تا از دهانه خروجي موشك با سرعت زياد بيرون بيايد.

 

وقتي سوخت جامد يا مايع مي سوزد و به گاز تبديل مي شود، جرم آن تغيير نمي كند بلكه تغيير در حجم آن است. يعني اگر شما مقدار يك كيلو سوخت مايع موشك را بسوزانيد مقدار يك كيلو جرم با حجمي بيشتر، از دهانه خروجي موشك با دماي بالا و سرعت زياد خارج مي شود. عمليات سوختن، جرم را شتاب مي دهد. 
بياييد تا بيش تر درباره ي نيروي پرتاب بدانيم:

 

 

 

 

نيروي پرتاب:

 

قدرت موتور يك موشك را نيروي پرتاب آن مي گويند. نيروي پرتاب در آمريكا به صورت 
(پوند)
 ponds of thrust
و در سيستم متريك با واحد نيوتون شناخته شده است (هر 4.45 نيوتون نيروي پرتاب برابر است با 1 پوند نيروي پرتاب).

 

هر يك پوند نيروي پرتاب (4.45 نيوتون) مقدار نيروي است كه مي تواند يك شي 1 پوندي (453.59 گرم) را در حالت ساكن مخالف نيروي جاذبه زمين نگه دارد.

 

بنابر اين در روي زمين شتاب جاذبه 21 متر در ساعت در ثانيه (32 فوت در ثانيه در ثانيه) است.

منبع: http://www.howstuffworks.com

هوپا

 


 



منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 11:26 منتشر شده است
برچسب ها : ,
نظرات(0)

ليست صفحات

تعداد صفحات : 1652

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس