سایت علمی و پژوهشی آسمان - مطالب ارسال شده توسط reyhaneh

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

تحقیق درمورد سوخت هيدروژن

بازديد: 115
بازگشت ]





 


 

امروزه گاز هيدروژن براي استفاده در موتورهاي احتراقي و وسايل نقليه الكتريكي باتريدار مورد بررسي قرار گرفته است. هيدروژن در دما و فشار طبيعي، يك گاز است و به اين علت، انتقال و ذخيره آن از سوخت هاي مايع ديگر، دشوارتر است. سامانه ‌هايي كه براي ذخيره هيدروژن توسعه يافته‌اند، عبارتند از: 

هيدروژن فشرده، هيدروژن مايع و پيوند شيميايي ميان هيدروژن و يك ماده ذخيره (براي مثال، هيدريد فلزات). 

با اين كه تاكنون هيچ سامانه حمل و نقل و توزيع مناسبي براي هيدروژن وجود نداشته، اما توانايي توليد اين سوخت از مجموعه متنوعي از منابع و خصوصيت پاك سوز بودن آن، هيدروژن را به سوخت جانشين مناسبي تبديل كرده است. 
هيدروژن يکي از ساده‌ترين و سبك‌ترين سوخت هاي گازي است که در فشار اتمسفري و دماي جوي حالت گاز دارد. سوخت هيدروژن همان گاز خالص هيدروژن نيست، بلكه مقدار كمي اكسيژن و ديگر مواد را نيز با خود دارد. منابع توليد سوخت هيدروژن شامل گاز طبيعي ، زغال سنگ ، بنزين و الكل متيليك هستند. فرآيند فتوسنتز در باكتري ها يا جلبك ها و يا شكافتن آب به دو عنصر هيدروژن و اكسيژن به كمك جريان الكتريسيته يا نور مستقيم خورشيد از آب، روش هاي ديگري براي توليد هيدروژن هستند. 
در صنعت و آزمايشگاه هاي شيمي، توليد هيدروژن به طور معمول با استفاده از دو روش شدني است:

 1- الكتروليز

 2- توليد گاز مصنوعي از بازسازي بخار يا اكسيداسيون ناقص

 در روش الكتروليز با استفاده از انرژي الكتريكي، مولكول‌هاي آب به هيدروژن و اكسيژن تجزيه مي‌شوند. انرژي الكتريكي را مي‌توان از هر منبع توليد الكتريسيته كه شامل سوخت هاي تجديد پذير نيز مي‌شوند، به دست آورد. وزارت نيروي آمريكا به اين نتيجه رسيده است كه استفاده از روش الكتروليز براي توليد مقادير زياد هيدروژن در آينده مناسب نخواهد بود. 
روش ديگر براي توليد گاز مصنوعي، بازسازي بخار گاز طبيعي است. در اين روش، مي‌توان از هيدروكربن‌هاي ديگر نيز به عنوان ذخاير تامين مواد استفاده كرد. براي نمونه، مي‌توان زغال سنگ و ديگر مواد آلي (بيوماس) را به حالت گازي درآورد و آن را در فرآيند بازسازي بخار براي توليد هيدروژن به كار برد. از طرفي چون هيدروکربن هاي فسيلي محدود و رو به اتمام هستند، پس بهتر است ديد خود را به سمت استفاده از منابع تجديد شونده معطوف کنيم. 
گاز هيدروژن مي تواند هم از منابع اوليه تجديد پذير و هم از منابع تجديد ناپذير توليد شود. امروزه توليد گاز هيدروژن از منابع تجديد پذير به سرعت مراحل توسعه و رشد خود را مي پيمايد. اين در حالي است که توليد گاز هيدروژن از منابع تجديد ناپذير به ويژه منابع فسيلي به علت محدود بودن اين منابع روز به روز کاهش مي يابد. 

گاز هيدروژن در اثر واکنش هاي تخميري ميکروارگانيسم هاي زنده، به ويژه باکتري ها و مخمرها روي بيوماس، توليد ميشود. بيوماس از منابع اوليه تجديد پذير است که از موادي مانند علوفه، ضايعات گياهان و فضولات حيوانات به دست مي آيد. در روند توليد گاز هيدروژن، باکتري هاي بي هوازي با استفاده از پديده تخمير، مواد آلي و آب را به گاز هيدروژن تبديل مي کنند.

براي توليد هيدروژن به وسيله باکتري ها دو نوع تخمير وجود دارد: يک نوع تخمير نوري است که در آن به منبع نور نياز است و نوع ديگر، تخمير در تاريکي است که نيازي به نور ندارد. در اين واکنش ها منابع کربني زيادي استفاده مي شود که همگي از بيوماس تامين مي شوند. 

در طبيعت ميکروارگانيسم هاي بي هوازي در غياب اکسيژن و با استفاده از پديده تخمير، گاز هيدروژن توليد مي کنند، ولي مقدار اين گاز از نظر کمي پايين است و از نظر اقتصادي براي مصارف صنعتي و خانگي و ... قابل توجيه نيست؛ از اين رو بايد با استفاده از روش هايي، بازده توليد گاز هيدروژن را افزايش داد. يکي از روش هايي که مي توان بازده توليد گاز هيدروژن را بالا برد، تغييرات ژنتيک در ژنوم اين باکتري ها با استفاده از روش هاي مهندسي ژنتيک و بيوتکنولوژي است. روش ديگر، استفاده از ترکيبي از باکتري هاي هوازي و بي هوازي در کنار هم است. در اين روش چون باکتري هاي بي هوازي در فرآيند تخمير توليد اسيد هاي آلي مي کنند، رفته رفته محيط واکنش اسيدي مي شود و PH پايين مي آيد؛ از اين رو توليد هيدروژن کاهش مي يابد. ولي هنگامي که باکتري هاي هوازي در محيط باشند، از اسيد هاي آلي استفاده و آنها از محيط خارج مي کنند؛ در نتيجه راندمان توليد گاز هيدروژن بالا مي رود. 

تحقيق و توسعه 

وزارت نيروي آمريكا براي توسعه استفاده از هيدروژن دو برنامه اصلي را دنبال مي‌كند که يکي برنامه هيدروژن وزارت نيرو و ديگري شبكه اطلاعاتي تكنولوژي‌هاي هيدروژن است. هيدروژن، سومين انرژي فراوان بر روي سطح زمين است. همان طور كه به صورت ابتدايي در آب و تركيبات آلي يافت مي شود. هيدروژن از هيدروكربن ها يا آب به دست مي آيد و هنگامي كه به عنوان سوخت مصرف مي شود، يا براي توليد الكتريسيته از آن استفاده مي شود و يا با تركيب مجدد با اكسيژن توليد آب مي كند. از اين رو و با توجه به قابليت بالاي توليد انرژي در اين سوخت اخيراً تلاش هاي زيادي براي جانشين کردن اين سوخت صورت مي گيرد. 

مسائل ايمني 

هيدروژن از ديدگاه ايمني نيز مطمئن و مطلوب است و براي حمل ونقل ، نگهداري و استفاده، خطرناك تر از سوخت هاي رايج ديگر نيست. به هر صورت مسائل ايمني همچنان به عنوان يكي از اساسي‌ترين مقوله ها در استفاده از انرژي هيدروژن باقي مي ماند.استانداردهاي متداول دنيا امنيت استفاده از آن را با سختگيري در طراحي‌ و انجام آزمايش هاي متعدد فراهم مي آورد. همچنين در حوزة نگهداري و حمل آن، استانداردهاي بسياري براي تمام تجهيزات مرتبط تدوين شده است. 

اقتصاد هيدروژن 

براي هيدروژن به عنوان يك سوخت، سيستم توزيعي مناسبي وجود ندارد. با اين كه معمولاً انتقال از طريق خط لوله با صرفه‌ترين راه انتقال سوخت‌هاي گازي است، اما در حال حاضر سيستم خط لوله مناسبي موجود نيست. انتقال هيدروژن به طور خاص از طريق مخزن و تانكرهاي گاز صورت مي‌گيرد. استفاده از هيدروژن به عنوان سوخت به يك زير ساختار براي حمل ونقل و نگهداري و با توجه به مسائل ايمني و اقتصادي نياز دارد. 
ديدگاه ايجاد يك زير ساختار كه هيدروژن را به عنوان منبع انرژي مورد استفاده قرار مي‌دهد، مفهوم اقتصادي بودن اين طرح را پديد آورده كه بهترين راه جهت ايجاد تقاضاي بيشتر براي توليد و مصرف اين انرژي است، زيرا منابع توليد هيدروژن بسيار ارزان و دردسترس هستند. هيدروژن قابليت بالايي براي توليد انرژي دارد و ميزان آلودگي ناشي از مصرف اين سوخت در محيط زيست بسيار کم است. اين سوخت به عنوان منبعي تجديدپذير، پاک و فراوان تر از سوخت فسيلي مي تواند کاربرد زيادي براي نيروگاه ها و بخش حمل و نقل داشته باشد.

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 10:15 منتشر شده است
برچسب ها : ,
نظرات(0)

تحقیق درمورد مهندسي معكوس

بازديد: 113

مهندسي معكوس




 


 

 مقدمه:

اگر سابقه ي صنعت و چگونگي رشد آن در كشورهاي جنوب شرقي آسيا را مورد مطالعه قرار دهيم به اين مطلب خواهيم رسيد كه در كمتر مواردي اين كشورها داراي ابداعات فن آوري بوده اند و تقريبا در تمامي موارد، كشورهاي غربي (‌آمريكا و اروپا) پيشرو بوده اند. پس چه عاملي باعث اين رشد شگفت آور و فني در كشورهاي خاور دور گرديده است؟

در اين نوشتار به يكي از راهكارهاي اين كشورها در رسيدن به اين سطح از دانش فني مي پردازيم.

در صورتي كه به طور خاص كشور ژاپن را زير نظر بگيريم، خواهيم ديد كه تقريبا تمامي مردم دنيا از نظر كيفيت، محصولات آنها را تحسين مي كنند ولي به آنها ايراد مي گيرند كه ژاپني ها از طريق كپي برداري از روي محصولات ديگران به اين موفقيت دست يافته اند.

اين سخن اگر هم كه درست باشد و در صورتي كه كپي برداري راهي مطمئن براي رسيدن به هدف باشد چه مانعي دارد كه اين كار انجام شود.اين مورد، به خصوص درباره ي كشورهاي در حال توسعه ويا جهان سوم به شكاف عميق فن آوري بين اين كشورها و كشورهاي پيشرفته  دنيا، امري حياتي به شمار مي رود و اين كشورها بايد همان شيوه را پيش بگيرند(البته در قالب مقتضيات زمان و مكان و ساير محدوديت ها) به عنوان يك نمونه، قسمتي از تاريخچه ي صنعت خودرو و آغاز توليد آن در ژاپن را مورد بررسي قرار مي دهيم:

توليد انبوه خودرو در ژاپن قبل از جنگ جهاني دوم ودر سال 1920 بوسيله ي كارخانه هاي "ايشي كاواجيما" آغاز شد كه مدل ژاپني فورد آمريكايي را كپي كرده و به شكل توليد انبوه به بازار عرضه نمود.

همچنين شورلت ژاپني AE جزو اولين خودرو هاي كپي شده آمريكايي توسط ژاپني ها بود كه به تعداد زياد توليد مي شد. سپس با تلاش هاي فراواني كه انجام شد(آنهم در شرايط بحراني ژاپن در آن دوره) مهمترين كارخانه‌ي خودرو سازي ژاپن يعني "تويوتا" درسال 1932 فعاليت خود را با ساخت خودرويي با موتور "كرايسلر" آغاز نمود ، در سال 1934، نوع ديگري از خودرو را با موتور"شورلت" ساخته و وارد بازار نموده و از سال 1936، اولين تلاش ها براي ساخت خودروي تمام ژاپني آغاز شد. البته تا مدت ها ژاپني ها مشغول كپي برداري از اتومبيل هاي آمريكايي و اروپايي بودند.

آنها خودروي پاكارد و بيوك آمريكايي و رولزرويس، مرسدس بنز و فيات اروپايي را نيز توليد كردند كه همين توليدها  زمينه ساز گسترش فعاليت خودروسازي ژاپن شد و سرانجام در دهه ي 1960 ميلادي پس از سعي و كوشش فراوان ، اولين اتومبيل تمام ژاپني كه ضمنا داراي استاندارد جهاني بود، توليد و به بازار عرضه شد.

در تمامي مطاب فوق رد پاي يك شگرد خاص و بسيار مفيد به چشم مي خورد كه "مهندسي معكوس"(Reverse Engineering ) نام دارد.

مهندسي معكوس روشي آگاهانه براي دستيابي به فن آوري  حاضر و محصولات موجوداست. در اين روش، متخصصين رشته هاي مختلف علوم پايه و كاربردي از قبيل مكانيك، فيزيك و اپتيك، مكاترونيك، شيمي پليمر، متالورژي،الكترونيك و ...جهت شناخت كامل نحوه ي عملكرد يك محصول كه الگوي فن آوري مذكور مي باشد تشكيل گروه هاي تخصصي داده و توسط تجهيزات پيشرفته و دستگاه هاي دقيق آزمايشگاهي به همراه سازماندهي مناسب تشكيلات تحقيقاتي و توسعه هاي R&D "سعي در به دست آوردن مدارك و نقشه هاي طراحي محصول فوق دارند تا پس از مراحل نمونه سازي (Prototyping) و ساخت نيمه صنعتي (Pilot plant) در صورت لزوم ، توليد محصول فوق طبق استاندارد فني محصول الگو انجام خواهد شد . همان گونه كه اشاره شد استفاده از روش مهندسي معكوس براي كشورهاي در حال توسعه يا عقب مانده روش بسيار مناسبي جهت دسترسي به فن آوري ، رشد و توسعه ي آن مي باشد. اين كشور ها كه در موارد بسياري از فن آوري ها در سطح پاييني قرار دارند، در كنار روش ها و سياست هاي دريافت دانش فني، مهندسي معكوس را مناسب ترين روش دسترسي به فن آوري تشخيص داده و سعي مي كنند با استفاده از روش مهندسي معكوس، اطلاعات و دانش فني محصولات موجود ، مكانيزم عمل كرد و هزاران اطلاعات مهم ديگر را بازيابي كرده و در كنار استفاده ار روش هاي مهندسي مستقيم (Forward Engineering) و روش هاي ساخت قطعات ، تجهيزات ، تسترهاي مورد استفاده در خط مونتاژ و ساخت مانند قالب ها ،گيج و فيكسچر ها و دستگاههاي كنترل، نسبت به ايجاد كارخانه اي پيشرفته و مجهز جهت توليد محصولات فوق اقدام نمايند. همچنين ممكن است مهندسي معكوس، براي رفع معايب و افزايش قابليت هاي محصولات موجود نيز مورد استفاده قرار مي گيرد. به عنوان مثال در كشور آمريكا ، مهندسي معكوس توسط شركت "جنرال موتور" بر روي محصولات كمپاني "فورد موتور" و نيز برعكس، براي حفظ وضعيت رقابتي و رفع نواقص محصولات به كار برده شده است.

بسياري از مديران كمپاني هاي آمريكايي، هر روز قبل از مراجعت به كارخانه، بازديدي از جديدترين محصولات عرضه شده در فروشگاه ها و نمايشگاه هاي برگزار شده انجام داده و جديدترين محصولات عرضه شده مربوط به محصولات كمپاني خود را خريداري نموده و به واحد تحقيق و توسعه (R&D) تحويل مي دهند تا نكات فني مربوط به طراحي وساخت محصولات مذكور و آخرين تحقيقات ، هر چه سريع تر در محصولات شركت فوق نيز مورد توجه قرار گيرد.

جالب است بدانيد كه مهندسي معكوس حتي توسط سازندگان اصلي نيز ممكن است به كار گرفته شود . زيرا به دلايل متعدد، نقشه هاي مهندسي اوليه با ابعاد واقعي قطعات (مخصوصا زماني كه قطعات چندين سال پيش طراحي و ساخته و به دفعات مكرر اصلاح شده اند)مطابقت ندارد براي مثال جهت نشان دادن چنين نقشه هايي با ابعاد واقعي قطعات و كشف اصول طراحي و تلرانس گذاري قطعات، بخش ميكروسويچ شركت(Honywell) از مهندسي معكوس استفاده نموده و با استفاده از سيستم اندازه گيري CMM (Coordinate Measuring Machine با دقت و سرعت زياد  ابعاد را تعيين نموده و به نقشه هاي مهندسي ايجاد شده توسط سيستم CAD منتقل مي كنند.

متخصصين اين شركت اعلام مي دارند كه روش مهندسي معكوس و استفاده از ابزار مربوطه، به نحو موثري زمان لازم براي تعمير و بازسازي  ابزارآلات ، قالب ها و فيكسچرهاي فرسوده را كم مي كند و لذا اظهار مي دارند كه "مهندسي معكوس زمان اصلاح را به نصف كاهش مي‌دهد."

مهندسين معكوس، اضافه بر اينكه بايد محصول موجود را جهت كشف طراحي آن به دقت مورد مطالعه قرار دهند، همچنين بايد مراحل بعد از خط توليد يعني انبارداري و حمل و نقل را از كارخانه تا مشتري و نيز قابليت اعتماد را در مدت استفاده ي مفيد مورد تجزيه و تحليل قرار دهند. چرا كه مثلا فرايند آنيلينگ مورد نياز قطعه،ممكن است براي ايجاد مشخصات مورد نظر در هنگام عمل كرد واقعي محصول يا در طول مدت انبارداري و حمل و نقل طراحي شده و لزوم وجود آن تنها در هنگام اجراي مراحل مذكور آشكار خواهد شد.

چه بسا كه بررسي يك پيچ بر روي سوراخي بر بدنه ي محصول(كه به قطعات و اجزاي ديگر متصل نشده) ، متخصصان مهندسي معكوس را ماه ها جهت كشف راز عملياتي آن به خود مشغول كند، غافل از اينكه محل اين پيچ، امكاني جهت تخليه ي هوا، تست آب بندي يا امكان دسترسي به داخل محصول جهت تست نهايي مي باشد. از سوي ديگر مهندسين معكوس بايد عوامل غير مستقيمي را كه ممكن است در طراحي و توليد محصول مذكور تاثير بگذارند، را به دقت بررسي نمايند. به دليل اينكه  بسياري از اين موارد با توجه به خصوصيات و مقتضيات زماني و مكاني ساخت محصول مورد نظر، توسط سازندگان اصلي توجيه پذير باشد اما ماجراي آن به وسيله ي مهندسين معكوس فاجعه ساز باشد. مثلا فرايند توليد قطعات تا حدود قابل توجهي بستگي به تعداد محصولات مورد نياز و ... دارد . اگر تعداد محصولات مورد نياز جهت كشور ثانويه در بسيار كمتر از كشور اصلي كه در حد جهاني و بين‌المللي فعاليت نموده ، باشد پس به عنوان مثال تعيين فرايند يك قطعه با باكاليتي (نوعي مواد پليمري) از طريق ساخت قالب هاي چند حفره اي با مكانيزم عملكرد خود كاربا توجه به معضلات پخت قطعه در داخل قالب ، مي تواند براي مجريان مهندسي معكوس فاجعه ساز باشد ( اگر كه  اين مهندسان از فرايند هاي ساده تر با توجه به تيراژ توليد محصول و نيز خصوصيات تكنولوژيكي كشور خود استفاده نكنند.) بنابراين، مرحله ي بعد از كشف طراحي، تطبيق طراحي انجام شده بر مقتضيات زماني و مكاني كشور ثانويه مي‌باشد كه بايد به دقت مورد توجه متخصصين مهندسي معكوس واقع شود.

خلاصه اينكه مهندسي معكوس ممكن است يك كاربرد غير معقول و نامناسب از كاربرد هنر و علم مهندسي به نظر برسد، اما آن يك حقيقت از زندگي روزمره ي ما به شمار مي رود.

منبع :سايت مهندسي مكنا

 



 

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 10:14 منتشر شده است
برچسب ها : ,
نظرات(0)

موتورهاي دو زمانه

بازديد: 145

موتورهاي دو زمانه

بدين دليل به آنها موتورهاي دو زمانه گويند که قبل از احتراق يک ضربه همفشردگي هوا و سوخت و يک ضربه اشتغال در آن وجود دارد. در چنين موتورهايي پيستون در واقع سه عمل مختلف را انجام مي دهد: 1- در يک طرف پيستون، محفظه احتراق وجود دارد. پيستون ترکيب هوا / سوخت را فشرده ساخته و توسط اشتعال سوخت، انرژي آزاد شده را دريافت مي دارد. در طرف ديگر پيستون، ميل لنگ ديده مي شود، جائي که پيستون خلائي را ايجاد مي کند تا از کاربراتور با استفاده از دريچه دهانگيز، هوا / سوخت را مکيده سپس ميل لنگ را فشرده مي سازد. موتور دو زمانه سبک و ساده تر بوده طوريکه نيروي  زيادي را ايجاد مي نمايد. اجزاء آن زود فرسوده مي گردد و روغن آن گران و حدود چهار اونس از آن در هر گالن مورد نياز است. موتورهاي دوزمانه کاملاً سوخت را استفاده نکرده طوريکه آلودگي زيادي را ايجاد مي نمايند.

 

Discover the differences between the engine in your car and the engine in your chain saw!

If you have read the HSW article on car engines and the diesel engine page, then you are familiar with the two types of engines found in nearly every car and truck on the road today. Both gasoline and diesel automotive engines are classified as four-stroke reciprocating internal combustion engines

There is a third class of engines, known as two-stroke engines, that are commonly found in lower-power applications. You will typically find two-stroke engines in things like:

Lawn and garden equipment like chain saws, leaf blowers, trimmers, etc.

Smaller motorcycle engines used on dirt bikes

Mopeds

Jet skis

Small outboard motors

Radio-controlled model planes

You find two-stroke engines used in these applications because two-stroke engines have two important advantages over four-stroke engines:

Two-stroke engines do not have valves, which simplifies their construction.

Two-stroke engines fire once every revolution while four-stroke engines fire one every other revolution, giving two-stroke engines a significant power boost.

These two advantages make two-stroke engines lighter, simpler and less expensive to manufacture. They also have the potential to pack about twice the power into the same space because there are twice as many power strokes per revolution. The combination gives two-stroke engines a great power-to-weight ratio.

You don't see two-stroke engines in cars, however. That's because two-stroke engines have a couple of significant disadvantages that will make more sense once we look at the operation of a two stroke engine.

 

The Two-Stroke Cycle


The following animation shows a two-stroke engine in action. You can compare this animation to the animations on the car engine and the diesel engine pages to see the differences. The big difference to notice when comparing figures is the fact that the spark-plug fires once every revolution in a two-stroke engine.

This figure shows a typical cross flow design. In this figure you can see that two-stroke engines are ingenious little devices that overlap operations in order to reduce the part count to a minimum.

You can understand a two-stroke engine by watching each part of the cycle. Start with the point where the spark plug fires. Fuel and air in the cylinder have been compressed and when the spark plug fires the mixture ignites. The resulting explosion drives the piston to the right. Note that as the piston moves to the right, it is compressing the air/fuel mixture in the crankcase. As the piston approaches the bottom of its stroke, the exhaust port is uncovered. The pressure in the cylinder drives most of the exhaust gases out of cylinder, as shown here:

 

 

As the piston finally bottoms out, the intake port is uncovered. The piston's movement has pressurized the mixture in the crankcase, so it rushes into the cylinder, displacing the remaining exhaust gases and filling the cylinder with a fresh charge of fuel, as shown here:

 

 

Note that in many two-stroke engines that use a cross-flow design, the piston is shaped so that the incoming fuel mixture doesn't simply flow right over the top of the piston and out the exhaust port.

Now the momentum in the crankshaft starts driving the piston back toward the spark plug for the compression stroke. As the air/fuel mixture in the piston is compressed, notice that a vacuum is created in the crankcase. This vacuum opens the reed valve and sucks air/fuel/oil in from the carburetor.

Once the piston makes it to the end of the compression stroke, the spark plug fires again to repeat the cycle. It's called a two-stoke engine because there is a compression stroke and then a combustion stroke. In a four-stroke engine there are separate intake, compression, combustion and exhaust strokes.

You can see that the piston is really doing three different things in a two-stroke engine:

On one side of the piston is the combustion chamber. The piston is compressing the air/fuel mixture and capturing the energy released by ignition of the fuel.

On the other side of the piston is the crankcase, where the piston is creating a vacuum to suck in air/fuel from the carburetor through the reed valve and then pressurizing the crankcase so that air/fuel is forced into the combustion chamber.

Meantime, the sides of the piston are acting like the valves, covering and uncovering the intake and exhaust ports drilled into the side of the cylinder wall.

It's really pretty neat to see the piston doing so many different things! That's what makes two-stroke engines so simple and lightweight.

If you have ever used a two-stroke engine, you know that you have to mix special two-stroke oil in with the gasoline. Now that you understand the two-stroke cycle you can see why. In a four-stroke engine, the crankcase is completely separate from the combustion chamber. In a four-stroke engine, therefore, you can fill the crankcase with heavy oil to lubricate the crankshaft bearings, the bearings on either end of the piston's connecting rod and the cylinder wall. In a two-stroke engine, on the other hand, the crankcase is serving as a pressurization chamber to force air/fuel into the cylinder. Therefore the crankcase cannot hold a thick oil. Instead, the oil you mix in with the gas is how the crankshaft, connecting rod and cylinder walls are lubricated. If you forget to mix in the oil, the engine isn't going to last very long!

 

Disadvantages of the Two-Stroke Engine


You can now see that two-stroke engines have two important advantages over four-stroke engines: they are simpler and lighter, and they produce about twice as much power. So why do all cars and trucks use four-stroke engines? There are four reasons:

Two stroke engines don't last nearly as long as four-stroke engines. The lack of a dedicated lubrication system means that two-stroke engine parts wear a lot faster.

Two-stroke oil is expensive and you need about 4 ounces of it per gallon of gas. You would burn about a gallon of oil every thousand miles if you used a two-stroke engine in a car.

Two stroke engines do not use fuel efficiently, so you would get lower MPG numbers.

Two-stroke engines produce a lot of pollution. So much, in fact, that it is likely that you won't see them around too much longer. The pollution comes from two sources. The first is the combustion of the oil. The oil makes all two-stroke engines smoky to some extent, and a badly worn two-stroke engine can emit huge clouds of oily smoke. The second reason is less obvious but can be seen in the following figure:  

Each time a new charge of air/fuel is loaded into the combustion chamber, part of it leaks out through the exhaust port. That's why you see a sheen of oil around any two-stroke boat motor. The leaking hydrocarbons from the fresh fuel combined with the leaking oil is a real mess for the environment.

These disadvantages mean that two-stroke engines are used only in applications where the motor is not used very often and the fantastic power-to-weight ratio of the two-stroke engine is important.

Meantime, manufacturers have been working to miniaturize and lighten four-stroke engines, and you can see that research coming to market in a variety of new marine and lawn-care products.

 

 

by Marshall Brain

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 10:13 منتشر شده است
برچسب ها : ,
نظرات(0)

موتور های دیزلی

بازديد: 209
اي ديزل




 


 


 

 

موتورهاي ديزلي

موتورهاي ديزلي نسبت به موتورهاي بنزيني ارزانتر و مقرون به صرفه تر هستند. موتور ديزلي فقط هوا را دريافت داشته، آنرا فشرده کرده و بعد سوخت را درون هواي فشرده تزريق مي نمايد. گرماي هواي فشرده فورآً سوخت را روشن مي سازد. موتور بنزيني در نسبت 8:1 تا 12:1 فشرده شده در حاليکه موتور ديزلي در نسبت 14:1 تا حداکثر 25:1 فشرده مي گردد. نسبت بالاي فشردگي موتور ديزلي سبب کارآيي بهتر آن مي شود. موتور ديزلي فقط از تزريق سوخت مستقيم استفاده مي نمايد. سوخت ديزلي مستقيماً وارد سيلندر مي گردد. موتور ديزلي شمع نداشته فقط گرماي هواي فشرده است که سوخت را در آن روشن مي سازد. يکي از تفاوتهاي بزرگ موتور بنزيني و ديزلي تزريق سوخت آن مي باشد. بيشتر موتورهاي ماشين از سوپاپ تزريق يا کاربراتور استفاده مي کنند. بنابراين تمام سوخت در سيلندر بارگذاري شده سپس فشرده مي گردد. فشردگي ترکيب سوخت / هوا نسبت فشردگي موتور را محدود مي سازد. اگر فشردگي هوا خيلي زياد باشد ترکيب سوخت / هوا فوراً مشتعل گشته و صداي تق تق را بوجود مي آورد. ديزل فقط هوا را فشرده ساخته طوريکه نسبت فشردگي مي تواند زياد شود. نسبت فشردگي زياد، نيروي زيادي را ايجاد خواهد نمود. سوخت ديزلي سنگينتر بوده بتدريج تبخير مي گردد، نقطه جوش آن بيشتر از نقطه جوش آب است، داراي اتمهاي کربن زيادي است ....

 

Diesel engines are more efficient and cheaper to run than gasoline engines. Learn what makes diesel engines different!

One of the most popular HowStuffWorks articles is How Car Engines Work, which explains the basic principles behind internal combustion, discusses the four-stroke cycle and talks about all of the subsystems that help your car's engine to do its job. One of the most common questions asked (and one of the most frequent suggestions made in the suggestion box) is, "What is the difference between a gasoline and a diesel engine?"

If you haven't already done so, you'll probably want to read How Car Engines Work first, to get a feel for the basics of internal combustion. But hurry back! In this edition of HowStuffWorks, we're going to unlock the secrets of the diesel!

 

The Diesel Cycle


Rudolf Diesel developed the idea for the diesel engine and obtained the German patent for it in 1892. His goal was to create an engine with high efficiency. Gasoline engines had been invented 1876 and, especially at that time, were not very efficient.

The main differences between the gasoline engine and the diesel engine are:

A gasoline engine intakes a mixture of gas and air, compresses it and ignites the mixture with a spark. A diesel engine takes in just air, compresses it and then injects fuel into the compressed air. The heat of the compressed air lights the fuel spontaneously.

A gasoline engine compresses at a ratio of 8:1 to 12:1, while a diesel engine compresses at a ratio of 14:1 to as high as 25:1. The higher compression ratio of the diesel engine leads to better efficiency.

Gasoline engines generally use either carburetion, in which the air and fuel is mixed long before the air enters the cylinder, or port fuel injection, in which the fuel is injected just prior to the intake stroke (outside the cylinder). Diesel engines use direct fuel injection -- the diesel fuel is injected directly into the cylinder.

 

The following animation shows the diesel cycle in action. You can compare it to the animation of the gasoline engine to see the differences:

Note that the diesel engine has no spark plug, that it intakes air and compresses it, and that it then injects the fuel directly into the combustion chamber (direct injection). It is the heat of the compressed air that lights the fuel in a diesel engine.

In the simplified animation above, the green device attached to the left side of the cylinder is a fuel injector. However, the injector on a diesel engine is its most complex component and has been the subject of a great deal of experimentation -- in any particular engine it may be located in a variety of places. The injector has to be able to withstand the temperature and pressure inside the cylinder and still deliver the fuel in a fine mist. Getting the mist circulated in the cylinder so that it is evenly distributed is also a problem, so some diesel engines employ special induction valves, pre-combustion chambers or other devices to swirl the air in the combustion chamber or otherwise improve the ignition and combustion process.

One big difference between a diesel engine and a gas engine is in the injection process. Most car engines use port injection or a carburetor rather than direct injection. In a car engine, therefore, all of the fuel is loaded into the cylinder during the intake stroke and then compressed. The compression of the fuel/air mixture limits the compression ratio of the engine -- if it compresses the air too much, the fuel/air mixture spontaneously ignites and causes knocking. A diesel compresses only air, so the compression ratio can be much higher. The higher the compression ratio, the more power is generated.

Some diesel engines contain a glow plug of some sort (not shown in this figure). When a diesel engine is cold, the compression process may not raise the air to a high enough temperature to ignite the fuel. The glow plug is an electrically heated wire (think of the hot wires you see in a toaster) that helps ignite the fuel when the engine is cold so that the engine can start. According to Cley Brotherton, a Journeyman heavy equipment technician:

All functions in a modern engine are controlled by the ECM communicating with an elaborate set of sensors measuring everything from R.P.M. to engine coolant and oil temperatures and even engine position (i.e. T.D.C.). Glow plugs are rarely used today on larger engines. The ECM senses ambient air temperature and retards the timing of the engine in cold weather so the injector sprays the fuel at a later time. The air in the cylinder is compressed more, creating more heat, which aids in starting.

Smaller engines and engines that do not have such advanced computer control use glow plugs to solve the cold-starting problem.

 

Diesel Fuel


If you have ever compared diesel fuel and gasoline, you know that they are different. They certainly smell different. Diesel fuel is heavier and oilier. Diesel fuel evaporates much more slowly than gasoline -- its boiling point is actually higher than the boiling point of water. You will often hear diesel fuel referred to as "diesel oil" because it is so oily.

Diesel fuel evaporates more slowly because it is heavier. It contains more carbon atoms in longer chains than gasoline does (gasoline is typically C9H20, while diesel fuel is typically C14H30). It takes less refining to create diesel fuel, which is why it is generally cheaper than gasoline.

Diesel fuel has a higher energy density than gasoline. On average, 1 gallon (3.8 L) of diesel fuel contains approximately 155x106 joules (147,000 BTU), while 1 gallon of gasoline contains 132x106 joules (125,000 BTU). This, combined with the improved efficiency of diesel engines, explains why diesel engines get better mileage than equivalent gasoline engines.

 

by Marshall Brain

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 10:12 منتشر شده است
برچسب ها : ,
نظرات(0)

امواج صوتي براي جلوگيري از رسوب ذرات در صنعت

بازديد: 57

 

امواج صوتي براي جلوگيري از رسوب ذرات در صنعت

 

امروزه استفاده از امواج صوتي (بوقهاي صوتي) (sonic horns) جهت جلوگيري از رسوب ذرات و خاكستر در ماشين آلات صنعتي از قبيل فن ها، كانالها، بويلرها و … افزايش يافته است. چنانچه اين بوقها بدرستي استفاده شوند موجب افزايش در مدار بودن ماشين، كاهش تعميرات، كاهش افت فشار و كاهش هزينه هاي تميزكاري خواهند شد.

 

در طراحي و استفاده اين تجهيزات در بويلرها شرايط هندسي بويلر و لوله ها، نوع سوخت، دبي گاز عبوري، دما و پارامترهاي ديگر مد نظر قرار مي گيرند.

 

در تميزكاري صوتي، امواج صوتي با لرزشهايي كه ايجاد مي كنند موجب جلوگيري از رسوب ذرات بر روي سطوح مي شوند بعبارتي لرزشهاي ايجاد شده موجب سست شدن چسبندگي ذرات با سطوح شده و در جريان گاز از محوطه خارج مي شوند. نكته مهم در اين تميزكاري عمل كردن آن در كليه نقاط مورد نظر از سيستم است. حتي در نقاط كور سيستم كه امكان تميزكاري با روشهاي ديگر مشكل است تميزكاري صوتي درست عمل مي كند. بوقهاي صوتي در فركانسهاي شنوا و مادون صوت كار مي كنند. بوقهاي شنوا در فركانسهاي بالاتر از 75 Hz  در گستره 140- 150 db كار مي كنند بعضي كاربردها نياز به امواج با طول موج كوتاهتر است( 250 Hz)  ولي اغلب موارد فركانس مورد نياز حدود125 Hz  مي باشد. از آنجا كه معمولا فركانس طبيعي سيستم به اين مقادير نمي رسد، خسارت ناشي از تشديد امواج غير ممكن است.

 

بوقهاي مادون صوت با امواج بلند درمحدوده فركانس كمتر از محدوده شنوايي بشر كار مي كنند (معمولا با فركانس 10- 35 Hz ) اين منجر به ايجاد توربولانس بيشتري در جريان گاز مي شود كه خود موجب مؤثرتر شدن عمل تميزكاري خواهد شد. البته احتمال خسارت در اين متد بيشتر است و لازم است پيش بيني هاي لازم صورت گيرد كه اين در دستورالعملهاي بهره برداري ارائه شده اند بعبارتي خسارات بوقهاي صوتي امروزه بيشتر به خاطر عدم نصب صحيح است تا بهره برداري و نقائص فني، بوقهاي مادون صوت در مواردي استفاده مي شوند كه تجهيزات داراي عمر بالايي هستند و همراه گاز رطوبت وجود دارد ( بطور مثال در پيش گرمكنهاي هواي دوار ) پيش گرمكن هواي دوار مي تواند لرزشهاي ايجاد شده در اثر استفاده از بوقهاي مادون صوت را تحمل كند. نكته ديگر در استفاده بهينه از بوقهاي صوتي اين است كه به تعداد كافي از بوقهاي صوتي در ماشين آلات نصب شود تا تميز كاري كامل ايجاد شود در غير اينصورت در محدوده خاصي اين امكان برقرار خواهد شد. بطور مثال در فيلترهاي دود هر بوق  125- 145 db براي هر5000 f t 2   سطح فيلتر مورد نياز است. زمان تناوب استفاده از بوق نيز از عوامل مؤثر در عملكرد بهينه است. اين زمان بايستي به اندازه كافي كوتاه اختيار شود تا ذرات رسوب شده فرصت چسبيدن به سطح را پيدا نكرده باشند. تنظيم بوق براي عمل به مدت 10 تا 15 ثانيه هر 10 تا 20 دقيقه معمولا" مناسب مي باشد. البته با توجه به شرائط و ظرفيت اين زمان تغيير ميكند.

 

يكي از مواردي كه تميزكاري اهميت دارد لوله هاي بويلرهاي نيروگاهي است. در نشست دود و رسوبات روي لوله ها چنانچه به سرعت تميزكاري صورت نگيرد اين منجر به افزايش مقاومت حرارتي و افزايش دماي موضعي لوله و كاهش تبادل گرما شده به حدي كه موجب ذوب شدن لوله و محكم تر شدن رسوب مي گردد در اين صورت لازم است هرچه سريعتر با استفاده از تجهيزات مربوطه، رسوبات از روي لوله ها جمع آوري شود. اين عمل با استفاده از sootblowers با كمك بخار و هوا صورت مي گيرد كه موجب صرف هزينه بالا و خسارات جانبي به اجزاء بويلر است. در اين ارتباط بويلر واحد صنعتيNortheastern در آمريكا كه همواره با مسئله جمع شدن رسوبات و ذوب فلز همراه بود با مجهز شدن به بوق صوتي در قسمتهاي مختلف بويلر در كنار sootblowersراندمان توليد بخار به مقدار قابل توجهي بهبود يافت و مسئله ذوب شدن لوله ها نيز حل گرديد. در عمل معلوم شد وجود بوق صوتي هيچگونه مشكلي در انتقال حرارت ايجاد نمي كند در صورتيكه استفاده از بخار و هواي فشار بالا موجب تلفات حرارتي مي گردد. بعلاوه زمان خارج از مدار بودن بويلر و ميزان خوردگي بويلر و مصرف هوا و بخار فشرده كاهش مي يابد.

 

ذكر اين مطلب در استفاده از بوقهاي صوتي مهم است كه اين وسايل جهت نگهداري تميز سيستم كاربرد دارند نه اينكه سيستم كثيف را تميز كنند.

 

  

 

منبع :    سايت Energy-tech

 

 

 

 

 

 

 

 

 

 





منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: یکشنبه 15 فروردین 1395 ساعت: 10:11 منتشر شده است
برچسب ها : ,
نظرات(0)

ليست صفحات

تعداد صفحات : 407

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس