کارکرد میکروسکوپ های فلورسانس چیست

راهنمای سایت

سایت اقدام پژوهی -  گزارش تخصصی و فایل های مورد نیاز فرهنگیان

1 -با اطمینان خرید کنید ، پشتیبان سایت همیشه در خدمت شما می باشد .فایل ها بعد از خرید بصورت ورد و قابل ویرایش به دست شما خواهد رسید. پشتیبانی : بااسمس و واتساپ: 09159886819  -  صارمی

2- شما با هر کارت بانکی عضو شتاب (همه کارت های عضو شتاب ) و داشتن رمز دوم کارت خود و cvv2  و تاریخ انقاضاکارت ، می توانید بصورت آنلاین از سامانه پرداخت بانکی  (که کاملا مطمئن و محافظت شده می باشد ) خرید نمائید .

3 - درهنگام خرید اگر ایمیل ندارید ، در قسمت ایمیل ، ایمیل http://up.asemankafinet.ir/view/2488784/email.png  را بنویسید.

http://up.asemankafinet.ir/view/2518890/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%D8%A2%D9%86%D9%84%D8%A7%DB%8C%D9%86.jpghttp://up.asemankafinet.ir/view/2518891/%D8%B1%D8%A7%D9%87%D9%86%D9%85%D8%A7%DB%8C%20%D8%AE%D8%B1%DB%8C%D8%AF%20%DA%A9%D8%A7%D8%B1%D8%AA%20%D8%A8%D9%87%20%DA%A9%D8%A7%D8%B1%D8%AA.jpg

لیست گزارش تخصصی   لیست اقدام پژوهی     لیست کلیه طرح درس ها

پشتیبانی سایت

در صورت هر گونه مشکل در دریافت فایل بعد از خرید به شماره 09159886819 در شاد ، تلگرام و یا نرم افزار ایتا  پیام بدهید
آیدی ما در نرم افزار شاد : @asemankafinet

تحقیق در مورد انواع میکروسکوپ

بازديد: 10152

تحقیق در مورد انواع میکروسکوپ

 انواع میكروسكوپ

میکروسکوپ ها به انواع زیر تقسیم می شوند :

1- میكروسكوپ نوری ( Light Microscope )

منبع نور در این میكروسكوپ نور مرئی میباشد و با عبور از چندین عدسی محدب كه در آن تعبیه شده است و نیز یك منشور كه مسیر نور را تغییر میدهد ( قدرت تفكیك 24/0 میكرون ) .

مهمترین ویژگی عدسی میكروسكوپ قدرت جداسازی یعنی توانایی تشخیص بین دو نقطه نزدیك به هم است. قدرت جداسازی یك میكروسكوپ در عمل نمایانگر كوچكترین جسم قابل رویت با آن میكروسكوپ است و هر چه بیشتر باشد, اجسام كوچكتری را با آن میكروسكوپ می توان دید. قدرت جداسازی هر میكروسكوپ معمولاَ با حد تفكیك یا R مشخص می شود. حد تفكیك مساوی است با نزدیكترین فاصله بین دو جسم بطوریكه هر یك هنوز بصورت مجزا قابل مشاهده باشد. هر قدر میزان R كوچكتر باشد, قدرت جداسازی میكروسكوپ بیشتر و بهتر است. عوامل بسیاری در تعیین R دخالت دارند, از جمله طول موج تابش كه با R رابطه مستقیم دارد. از لحاظ نظری, كوچكترین مقدار ممكن برای R در میكروسكوپ نور حدود 200nm است كه تنها بهترین میكروسكوپهای نوری این حد تفكیك را دارند. حد تفكیك در اغلب میكروسكوپ های نوری كمتر از 500nm نیست, لذا اشیایی كوچكتر از 500nm با آنها قابل مشاهده نیستند. مشاهده سلولهای باكتری و میتوكندری با میكروسكوپ نوری مقدور است, اما مشاهده ریبوزوم ها با آن ممكن نیست. تفكیك انواع سلولها, مثلاَ گلبول های قرمز از گلبولهای سفید خون یا سلولهای فیبرو بلاستی از سلولهای پوششی با میكروسكوپ نوری امكان پذیر است. این میكروسكوپ در آزمایشات باكتری شناسی, انگل شناسی, قارچ شناسی, حشره شناسی و بافت شناسی كاربرد دارد.

اجزای میكروسكوپ نوری کدامند

1- اجزای نوری : اجزای نوری عمدتاً مشتمل بر منبع تغذیه نور و قطعات مرتبط با آن میباشد ، از قبیل لامپ با ولتاژ 20 وات ، فیلتر تصحیح نور و كندانسور كه كندانسور مشمل بر پنج قطعه است كه نور را تصحیح كرده و بر روی نمونه یا شیء مورد بررسی متمركز میكند:

1 فیلتر رنگی ( تصحیح نور ) 2 دیافراگم كه حجم نور را تنظیم میكند

3 دو عدد عدسی محدب 4 پیچ نگهدارنده كندانسور 5 - پیچ تنظیم دیافراگم

2 میكروسكوپ ماوراء بنفش ( Ultra Violet Microscope )

میكروسكوپ ماوراء بنفش یا میكروسكوپ U.V. كه منبع تغذیه نور ، اشعه U.V. میباشد. نسبت به میكروسكوپ نوری معمولی قدرت تفكیك بالاتری داشته چراكه اشعه ماوراء بنفش طول موج كوتاهتری نسبت به نور مرئی دارد . عدسی شیئی بكار رفته در این میكروسكوپ از جنس كوارتز میباشد. بدلیل مضر بودن اشعه ماوراء بنفش برای چشم انسان، از تصویر شیء عكسبرداری شده و سپس بر روی صفحه مانیتور قابل مشاهده است ( قدرت تفكیك 600 آنگستروم ).

3 میكروسكوپ فلورسانس (Fluorescence Microscope )

 خصوصیات میکروسکوپ فلورسانت (fluorescent microscope)

انواع خاصی از میکروسکوپ نوری که منبع نور آن پرتوهای فرابنفش است.برای مشاهده نمونه زیر این میکروسکوپ ها بخش ها یا ملکول های ویژه داخل سلول با مواد فلورسانت یا نورافشان رنگ آمیزی می شوند. زمانی هدف تشخیص پروتئین های خاص یا جایگاه آنها در سلول باشد، روش های معمولی رنگ آمیزی که پروتئین ها را به طور عام رنگ می کنند قابل استفاده نیست.برای رنگ آمیزی اختصاصی، معمولا از پادتن های اختصاصی متصل به مواد فلورسانت استفاده می شود.مواد فلورسانت نور را در طول موج فرابنفش جذب می کنند و در طول موج بلندتری در طیف مرئی تابش می کنند. تصویری که دیده می شود حاصل نور تابش شده از نمونه است. رودامین و فلورسئین دو نوع از رنگ های معمول فلورسانت هستند که به ترتیب نور قرمز و سبز از خود تابش می کنند.

کارکرد میکروسکوپ های فلورسانس چیست

در ابتدای قرن بیستم پدیده فلورسانس در ساخت میکروسکوپ به کار گرفته شد. فلورسانس یکی از پدیده های مربوط به نورتابی(لومین سانس) است. ما معمولاً وقتی جسمی را می بینیم که نور از آن جسم بازتاب می شود. رنگ جسم نیز به این موضوع وابسته است که جسم چه طول موجی را بازتاب می کند. در پدیده فلورسانس مولکول یک فوتون(یک ذره نور) با طول موج خاص را جذب و سپس آن را با طول موج بلندتری منتشر می کند.فلورسانس یکی از روش های بسیار متداول در تصویربرداری بافت های زیست شناختی است. مواد زیست شناختی معمولاً نور را به شدت متفرق می کنند و در نتیجه تماشای آن ورای سطح سلول دشوار است. در پدیده فلورسانس معمولاً طول موج نور گسیل شده از طول موج نور تابیده شده بیشتر است، بنابراین نور متفرق شده از سطح سلول را می توان از نور تابیده شده به سلول تفکیک کرد. برای انجام این کار از آینه های دورنگی استفاده می کنند. این آینه ها نور تابیده شده را دوباره به نمونه برمی گردانند، اما نور فلورسانس از آن عبور می کند، در نتیجه تماشای ساختارهای درونی سلول امکان پذیر می شود.برخی مواد زیست شناختی به طور طبیعی فلورسنت هستند، اما رنگ ها و پروتئین های فلورسنت فراوانی نیز وجود دارد که می توان از آنها برای رنگ آمیزی بخش های ویژه یک سلول مثل هسته استفاده کرد. حتی می توان آنها را به پروتئین های خاص درون سلول متصل کرد، در نتیجه پیگیری حرکت آنها درون سلول امکان پذیر می شود.استفاده از رنگ ها و پروتئین های نور کلید زدنی فلورسنت که به تازگی کشف شده است، کاربردهای بسیاری در تصویربرداری فلورسانس دارد. این مولکول ها می توانند دو حالت داشته باشند؛ یک حالت درخشان یا حالت فلورسنت و یک حالت تاریک یا غیرفلورسنت.کلیدزنی بین این دو حالت با تاباندن نور با دو طول موج متفاوت انجام می شود.

یکی از کاربردهای مولکول های نور کلیدزدنی ردیابی پروتئین ها است. اگر مولکول های فلورسنت به پروتئین های خاص متصل شوند و یک بخش کوچک از آنها فعال شود، پیگیری جابه جایی پروتئین ها بسیار آسان تر از حالتی است که همه پروتئین های درون سلول نور را گسیل کنند. علاوه بر این لحظه دقیق فعال سازی را می توان کنترل کرد.

قدرت تفکیک زیاد بدون کشتن نمونه

چگونه می توان بدون آنکه نمونه های زیست شناختی را از بین برد، میکروسکوپ هایی با قدرت تفکیک زیاد ساخت؟ از آنجایی که قدرت تفکیک یک میکروسکوپ به طول موج بستگی دارد، یک راه برای افزایش قدرت تفکیک کاهش دادن طول موج است.

برای مشاهده نمونه بوسیله این میكروسكوپ ها, بخش ها یا مولكول های ویژه در داخل سلول با مواد فلورسنت یا نور افشان رنگ آمیزی می شوند. زمانی كه هدف تشخیص پروتئین های خاص یا جایگاه آنها در سلول باشد, روش های معمول رنگ آمیزی كه پروتئین ها را به طور عام رنگ می كنند قابل استفاده نیستند. برای رنگ آمیزی اختصاصی, معمولاَ از پادتن های اختصاصی متصل به مواد فلورسنت استفاده می شود.

در میكروسكوپ فلورسنت از ماوراء بنفش بعنوان نور استفاده می شود. ماوراء بنفش طول موج كمتر، انرژی بیشتر و قدرت نفوذ زیادی دارد. عدسی هایی كه در میكروسكوپ فلورسنت به كار رفته اند از جنس كوارتز می باشد چون نور ماوراء بنفش از عدسی های معمولی عبور نمی كند.

این نوع میكروسكوپ به دو دسته فیلتر مجهز هستند. دسته اول بین منبع نور و نمونه قرار دارد و فقط اجازه می دهد كه امواج تابش شده از ماده فلورسنت، عبور نمایند. دسته دوم بین نمونه و عدسی چشمی قرار دارد و تنها به امواج تابش شده از ماده فلورسنت، اجازه عبور می دهد. رود امین و فلورسئین دو نوع از رنگهای معمولی فلورسنت هستند كه به ترتیب نور قرمز و سبز از خود تابش می كنند. این میكروسكوپ برای مطالعه انواع آنتی بادی از نظر ایمنی شناسی و بررسی بعضی از باكتریها مثل مایكو باكتریوم توبركلوزیس ( میكروب سل) از نظر باكتری شناسی كار برد دارد.

بطوركلی مواد از لحاظ خاصیت فلورسانس دو نوعند :

- فلورسانس اولیه كه این مواد ذاتاٌ خاصیت فلورسانس دارند یعنی از خود نور ساطع میكنند مثل ویتامینها و رنگها .

- فلورسانس ثانویه كه از خود خاصیت فلورسانسی نداشته و با رنگ آمیزی و معرفهای گوناگون از قبیل سولفات بربرین و نارنجی آكریدین خاصیت فلورسانسی را به آنها القاء میكنیم.

منبع تغذیه نور در این میكروسكوپ اشعه U.V. میباشد. در اینجا نیز از تصویر شیء عكسبرداری شده كه بر روی صفحه مانیتور قابل مشاهده است

4 میكروسكوپ زمینه سیاه ( Dark Field Microscope )

مطالعه سلول های زنده با این میكروسكوپ ها نیز مقدور است. سیستم های نوری خاصی در تمام این نوع میكروسكوپ ها وجود دارد كه تباین كافی بین اجزار سلول ایجاد كرده، مشاهده سلول های زنده را مقدور می سازند.

در میكروسكوپ زمینه سیاه نور حامله از منبع نوری به شكل مخروط در می آید و انوار از اطراف به نمونه تابیده می شود این كار توسط كندانسور خاص این میكروسكوپ انجام می گیرد. در نتیجه تصویر نمونه بصورت روشن در یك زمینه تاریك مشاهده می شود. استفاده از میكروسكوپ زمینه سیاه برای مشاهده حركت باكتری معمول است ( مثل اسپیروكت تروپونها پالیدوم ( عامل بیماری سیفیلیس).

منبع تغذیه نور در این نوع میكروسكوپ نور مرئی میباشد و با ایجاد انكسار نور توسط آئینه های محدب و مقعر شیء یا نمونه مورد بررسی، شفاف و نورانی در زمینه سیاه دیده میشود.

5 - میكروسكوپ اختلاف فاز ( Phase Contrast Microscope )

مزیت میکروسکوپ اختلاف فاز در این است که می توانیم با آن سلول های زنده را با جزئیات بیشتر مشاهده کنیم.تیمارهایی مثل تثبیت نمونه می توانند دگرگونی هایی در ساختار درونی سلول بوجود آورند. بنابراین مطالعه سلول های زنده که هیچ تیماری ندیده اند خیلی مطلوب است. می توان فرایند هایی مثل تقسیم میتوز(mitosis) در سلول های زنده را نیز با این میکروسکوپ ها مطالعه کرد. در برخی موارد برای عکس برداری پیوسته و دراز مدت از سلول فعال ، دوربینی به میکروسکوپ وصل می شود.مطالعه سلول های زنده با میکروسکوپ تداخلی(interference microscope) و میکروسکوپ زمینه سیاه(dark field microscope) نیز مقدور است. سیسم های نوری خاصی در تمام این نوع میکروسکوپ ها وجود دارد که به علت ویژگی آنها تباین کافی بین اجزای سلول ایجاد و مشاهده ی سلول های زنده مقدور می شود. استفاده از میکروسکوپ زمینه سیاه برای مشاهده ی حرکت باکتری معمول است، که در این مورد ایجاد تباین بین سلول باکتری زنده و محیط اطرافش مهم است.

مزیّت میكروسكوپ اختلاف فاز در این است كه می توانیم با آن سلولهای زنده را با جزئیات بیشتر مشاهده كنیم. تیمهایی مثل تثبیت نمونه می توانند دگرگونی هایی در ساختار درونی سلول، بوجود آورند. بنابراین مطالعه سلول های زنده ای كه هیچ گونه تیماری ندیده اند خیلی مطلوب است. می توان فرآیندهایی مثل تقسیم میتوز در سلول های زنده را نیز با این نوع میكروسكوپ ها مطالعه كرد. در برخی موارد، برای عكس برداری پیوسته و دراز مدت از سلول فعال، دوربین به میكروسكوپ وصل می شود.

در میكروسكوپ اختلاف فاز نور حاصله از منبع نوری به انوار مختلف شكسته شده و شكسته نشده تقسیم می شود این كار توس دیافراگم مخصوص این میكروسكوپ انجام می گیرد. انواری كه می شكنند. به جسم یا نمونه نفوذ نمی كنند اما انواری كه نمی شكنند به جسم یا نمونه نفوذ می كنند در نتیجه بین نمونه و محیط اطراف آن اختلاف بوجود می آید و نمونه به صورت شفاف دیده می شود.

منبع تغذیه نور در این نوع میكروسكوپ نور مرئی میباشد و برای بررسی بافتها یا نمونه هایی كه اختلاف انكساری نوری كمی دارند مورد استفاده قرار میگیرد بدین منظور صفحه سوراخ داری به نام پلاك فاز در كندانسور تعبیه میشود .

6 - میكروسكوپ الكترونی ( Electron Microscope )

قدرت جداسازی میکروسکوپ الکترونی از میکروسکوپ نوری بهتر است به این معنی که با میکروسکوپ الکترونی اجزای کوچکتری را می توان دید. قبلا گفته شد حد تفکیک (R) به طول موج نوری بستگی دارد که به نمونه می تابد. در حقیقت بین این دو رابطه مستقیمی وجود دارد یعنی هر چقدر طول موج تابشی کوچکتر باشد ،R نیز کوچکتر و قدرت جداسازی بیشتر است. در میکروسکوپ الکترونی بجای استفاده از نور مرئی از امواج الکترون ها استفاده می شود. در شرایط مناسب طول موج الکترون ها به nm ۰/۰۰۵ می رسد. در این طول موج بهترین R ممکن حدود nm ۰/۰۰۲ است. در عمل به علت محدودیت های دیگر ، قدرت جداسازی میکروسکوپ های الکترونی هیچ وقت به این خوبی نیست.حد تفکیک با میکروسکوپ الکترونی برای ملکول های تخلیص شده ی زیستی ، حدود ۰/۱ نانومتر و برای سلول ها ۲ نانومتر است که دست کم 100 برابر بهتر از بهترین میکروسکوپ های نوری است.

دو نوع میکروسکوپ الکترونی به نام میکروسکوپ الکترونی گذاره و میکروسکوپ الکترونی نگاره وجود دارد. میکروسکوپ الکترونی گذاره (transmission electron microscope) زودتر اختراع شد و قدرت جداسازی بهتری دارد. در این نوع میکروسکوپ ، الکترون ها هنگام برخورد به نمونه از برخی مناطق آن عبور می کنند و از مناطقی دیگر بازتابیده می شوند. عامل تعیین کننده در این امر در نهایت ویژگی اتم های تشکیل دهنده ی مناطق مختلف سلول است. الکترون های عبوری در دستگاه تشخیص داده می شوند و تصویری از نمونه حاصل می شود. سلول های زنده با میکروسکوپ الکترونی قابل مشاهده نیست.

یكی از تجهیزات بزرگ علمی میكروسكوپ الكترونی است كه براساس قوانین نوری كار میكند دراین دستگاه شار الكترون پر انرژی از یك منبع الكترون خارج شده وتحت شتاب به طرف هدف میرود در مسیر خود از روزنه های تعبیه شده در یك فلز عبور كرده وبا عبور از لنزهای مغناطیسی بر روی شی مورد نظر تابانده شده ودر نتیجه بازتاب نور تصویر شی دیده خواهد شد.

اطلاعاتی را كه میكروسكوپ الكترونی ارائه میدهد:

1 - توپوگرافی شئ 

: (نقشه برداری )كه با اشكار كردن مشخصات سطح و بافت داخلی شئ میتوان به خواصی مانند سفتی و میزان ار تجائی بودن ان پی برد.


2 - مورفولوژی (ریخت شناسی):

 از ان رو كه در این رویت شكل و سایز ذرات مشخص است میتوان به سختی و استحكام پی برد.

3 - تركیب: این میكروسكوپ میتواند عناصر سازنده شئ را مشخص نماید بنابراین میتوان به خواصی مانند نقطه ذوب اكتیویته شئ نیز دست یافت.

4 - بلور شنا سی:

 میكرو سكوپ الكترونی چگونگی چیده شدن اتمها را در مجاورت یكدیگر را می دهد وبه این تر تیب میتوان انها را از نظر رسانایی و خواص الكتریكی بررسی نمود.

پیشرفته ترین میكروسكوپ قرن حاضر، با قدرت تفكیك 2 آنگستروم است. در این میكروسكوپ با عبور پرتوهای الكترونی ساطع شده از رشته سیمی تنگستن با طول موج بسیار پائین از عدسی های متعدد كه در نهایت بر روی یك صفحه فلورسنت یا صفحه مانیتور، عكسبرداری صورت گرفته و تصویر شیء قابل مشاهده میباشد.

قدرت جداسازی میكروسكوبهای الكترونی از میكروسكوپ نوری بهتر است به این معنی كه با میكروسكوپهای الكترونی اجزای كوچكتر را می توان دید. قبلاً متذكر شدیم كه بین R و طول موج نور تابیده شده به نمونه رابطه مستقیمی برقرار است، یعنی هر چقدر طول موج تابشی كوچكتر باشد، R نیز كوچكتر و قدرت جداسازی بیشتر است. طول موج نور مرئی بین mm300 تا 800mm و بهترین حد تفكیك میكروسكوپهای نوری 200nm است.

در میكروسكوپهای الكترونی به جای استفاده از امواج نور مرئی، از امواج الكترونها استفاده می شود. در شرایط مناسب، طول موج الكترونها به ۰.۰۰۵ نانومتر می رسد، یعنی حدود 000/100 برابر كوتاهتر از طول موج نور مرئی. در این طول موج، بهترین R ممكن حدود ۰.۰۰۲ نانومتر است. در عمل، به علت محدودیتهای دیگر، قدرت جداسازی میكروسكوپهای الكترونی هیچ وقت به این خوبی نیست. حد تفكیك (R) با میكروسكوپ الكترونی برای مولكولهای تخلیص شده زیستی، حدود nm0.1 و برای سلول ها حدود 2nm است كه دست كم صد برابر بهتر از میكروسكوپ های نور است.

دو نوع میكروسكوپ الكترونی بنام های میكروسكوپ الكترونی گذاره و میكروسكوپ الكترونی نگاره وجود دارد.

میكروسكوپ الكترونی گذاره:

این میكروسكوپ زودتر اختراع شده و قدرت جداسازی بهتری دارد. در این نوع میكروسكوپ، الكترون ها هنگام برخورد به نمونه از برخی مناطق آن عبور می كنند و از مناطقی دیگر بازتابیده می شوند. الكترون ها هنگام برخورد به نمونه از برخی مناطق آن عبور می كنند و از مناطقی دیگر بازتابیده می شوند. الكترون های عبوری در دستگاه تشخیص داده می شوند و تصویری از نمونه حاصل می شود. جزئیات روش های تثبیت، برش گیری و رنگ آمیزی برای میكروسكوپ الكترونی اختصاصی است. به عنوان مثال، برای رنگ آمیزی نمونه از فلزات سنگین مانند طلا استفاده می شود تا الكترون ها از اندامك ها و ساختارهای درون سلولی، مثل ریبوزوم، و مولكول های بزرگ سلول مثل DNA، با میكروسكوپ الكترونی گذاره قابل تشخیص هستند، اما جایگاه اتم های تشخیص دهنده مولكول ها معمولاً تعیین نمی شود.

میكروسكوپ الكترونی نگاره:

میکروسکوپ الکترونی نگاره (scanning electron microscope) نوع ساده تر میکروسکوپ الکترونی است برای بررسی نمونه با این میکروسکوپ ، نمونه با لایه ای نازک از فلز سنگین به صورت یکنواخت پوشیده شود. الکترون های تابیده شده به سطح نمونه از هیچ ناحیه ای از آن عبور نمی کنند، بلکه در برخورد با سطح نمونه باعث تولید الکترون های بازتابیده می شوند. این الکترون ها تشخیص داده شده و تصویری سه بعدی از سطح نمونه حاصل می گردد. قدرت جداسازی میکروسکوپ الکترونی نگاره حدود nm10 است.

این نوع ساده ترین میكروسكوپ الكترونی است. برای بررسی نمونه با این نوع میكروسكوپ، نمونه با لایه ای نازك از فلز سنگین به صورت یكنواخت پوشیده می شود. الكترونهای تابیده شده به سطح نمونه از هیچ ناحیه ای از آن عبور نمی كنند، بلكه در برخورد با سطح نمونه باعث تولید الكترون های بازتابیده می شوند، این الكترونها تشخیص داده می شوند و تصویری سه بعدی از سطح نمونه حاصل می گردد. حد تفكیك میكروسكوپ الكترونی نگاره حدود 10nm است.

میکروسکوپ STM و میکروسکوپ پرتو X

STM حروف اول Scanning Tunneling Microscope است این نوع میکروسکوپ در دهه 1970 اختراع شد و مخترعان آن در سال 1981 جایزه نوبل را دریافت کردند.همانطور که گفته شد طول موج محدودیتی برای میزان R تعیین می کند. نوآوری STM در این است که در آن امواج نوری یا امواج نوع دیگر به کار گرفته نمی شودو هیچ نوع عدسی در آن وجود ندارد.بیان دقیق نحوه کار این میکروسکوپ خارج از توان این مطلب است ولی به طور خلاصه سوندی که نوک آن به اندازه یک اتم است، ویژگی های نمونه را در ابعاد اتمی روبش می کند. STM ساختار سطحی نمونه را بررسی می کند.اما میکروسکوپ مشابه دیگر ویژگی های الکتریکی ، مغناطیسی و یا دمای نمونه را تعیین می کنند. در حال حاضر این میکروسکوپ ها برای نمونه های زیستی و بیشتر برای نمونه های غیر زیستی مورد استفاده قرار می گیرند.

میکروسکوپ پرتو X نوع دیگری از میکروسکوپ های نوین است که کاربرد بیشتری برای نمونه های زیستی دارد. قدرت جداسازی آن چند صد آنگستروم و ضعیف تر از میکروسکوپ الکترونی است ، اما سلول های زنده با آن قابل بررسی هستند

STM حروف اول Microscope Scanning Tunnelig است. این نوع میكروسكوپ در دهه 1970 اختراع شد و مخترعان آن در سال 1981 جایزه نوبل را دریافت كردند. همان طور كه گفته شد طول موج، محدودیتی برای میزان R تعیین می كند. نوآوری STM در این است كه در آن امواج نوری یا امواج نوع دیگری بكار گرفته نمی شوند و هیچ نوع عدسی در آن وجود ندارد. بطور خلاصه سوندی كه نوك آن به اندازه یك اتم است، ویژگی های نمونه را در ابعاد اتمی روبش می كند. STM ساختار سطحی نمونه را بررسی می كند اما میكروسكوپ های مشابه دیگر ویژگی های الكتریكی، مغناطیسی و یا دمای نمونه را تعیین می كنند. در حال حاضر این میكروسكوپ ها برای نمونه ای زیستی و بیشتر برای نمونه های غیر زیستی مورد استفاده قرار می گیرند.

میکروسکوپ های پلاریزان

در بسیاری از مطالعات میکروسکوپی مثل مطالعه سنگها ، مواد شیمیایی کریستالی و بسیاری از ترکیبات آلی مثل ساختمان کراتین ، عضلات ، کلاژنها نیاز به استفاده از میکروسکوپهای پلاریزان می‌باشد. جز اینها در مطالعات میکروسکوپی پلاریزان نور پلاریزه می‌باشد.

نور پلاریزه

نور معمولی متشکل از فوتونها هستند دارای بردارهای الکتریکی و مغناطیسی عمود بر هم می‌باشند. این دو میدان بطور سینوسی در حال نوسان می‌باشند و در ضمن در جهت عمود بر صفحه دو میدان و یا صفحه ارتعاشات این دو منتشر می‌شوند. ارتعاشات میدان الکتریکی نور غیر پلاریزه در یک نقطه در همه جهات می‌باشد. اکثر مواد شیشه‌ای و بسیاری از مواد دارای این ویژگی هستند که وقتی یک دسته پرتو نوری به آنها وارد شود در آن صورت سرعت انتشار و نحوه انتشار نور در جهات مختلف در آنها مشابه و یکسان می‌باشد و تنها تغییری که در نحوه حرکت دسته پرتو ضمن عبور از این مواد حاصل می‌شود آن است که بر اساس قوانین اسنل مسیر و جهت آنها نسبت به قبل از ورودشان به آن ماده تغییر می‌کند. اینگونه مواد را مواد ایزوتروپیک (isotropic) می‌نامند. مواد ایزوتروپیک در همه جهات دارای ضزیب شکست مشابه هستند.

منبع : سايت علمی و پژوهشي آسمان--صفحه اینستاگرام ما را دنبال کنید
اين مطلب در تاريخ: چهارشنبه 21 خرداد 1393 ساعت: 11:50 منتشر شده است
برچسب ها : ,,,,,,,,,,,,,,,
نظرات(8)

شبکه اجتماعی ما

   
     

موضوعات

پيوندهاي روزانه

تبلیغات در سایت

پیج اینستاگرام ما را دنبال کنید :

فرم های  ارزشیابی معلمان ۱۴۰۲

با اطمینان خرید کنید

پشتیبان سایت همیشه در خدمت شماست.

 سامانه خرید و امن این سایت از همه  لحاظ مطمئن می باشد . یکی از مزیت های این سایت دیدن بیشتر فایل های پی دی اف قبل از خرید می باشد که شما می توانید در صورت پسندیدن فایل را خریداری نمائید .تمامی فایل ها بعد از خرید مستقیما دانلود می شوند و همچنین به ایمیل شما نیز فرستاده می شود . و شما با هرکارت بانکی که رمز دوم داشته باشید می توانید از سامانه بانک سامان یا ملت خرید نمائید . و بازهم اگر بعد از خرید موفق به هردلیلی نتوانستیدفایل را دریافت کنید نام فایل را به شماره همراه   09159886819  در تلگرام ، شاد ، ایتا و یا واتساپ ارسال نمائید، در سریعترین زمان فایل برای شما  فرستاده می شود .

درباره ما

آدرس خراسان شمالی - اسفراین - سایت علمی و پژوهشی آسمان -کافی نت آسمان - هدف از راه اندازی این سایت ارائه خدمات مناسب علمی و پژوهشی و با قیمت های مناسب به فرهنگیان و دانشجویان و دانش آموزان گرامی می باشد .این سایت دارای بیشتر از 12000 تحقیق رایگان نیز می باشد .که براحتی مورد استفاده قرار می گیرد .پشتیبانی سایت : 09159886819-09338737025 - صارمی سایت علمی و پژوهشی آسمان , اقدام پژوهی, گزارش تخصصی درس پژوهی , تحقیق تجربیات دبیران , پروژه آماری و spss , طرح درس